Background: Stroke, a leading global cause of mortality and neurological disability, is often associated with atherosclerotic carotid artery disease. Distinguishing between symptomatic and asymptomatic carotid artery disease is crucial for appropriate treatment decisions. Radiomics, a quantitative image analysis technique, and ML have emerged as promising tools in medical imaging, including neuroradiology.
View Article and Find Full Text PDFCarotid atherosclerosis plays a substantial role in cardiovascular morbidity and mortality. Given the multifaceted impact of this disease, there has been increasing interest in harnessing artificial intelligence (AI) and radiomics as complementary tools for the quantitative analysis of medical imaging data. This integrated approach holds promise not only in refining medical imaging data analysis but also in optimizing the utilization of radiologists' expertise.
View Article and Find Full Text PDFBackground And Purpose: Systemic lupus erythematosus is a complex autoimmune disease known for its diverse clinical manifestations, including neuropsychiatric systemic lupus erythematosus, which impacts a patient's quality of life. Our aim was to explore the relationships among brain MR imaging morphometric findings, neuropsychiatric events, and laboratory values in patients with systemic lupus erythematosus, shedding light on potential volumetric biomarkers and diagnostic indicators for neuropsychiatric systemic lupus erythematosus.
Materials And Methods: Twenty-seven patients with systemic lupus erythematosus (14 with neuropsychiatric systemic lupus erythematosus, 13 with systemic lupus erythematosus), 24 women and 3 men (average age, 43 years, ranging from 21 to 62 years) were included in this cross-sectional study, along with 10 neuropsychiatric patients as controls.
Objective: Voxel-Based Morphometry (VBM) and Source-Based Morphometry (SBM) are widely used techniques for analyzing structural Magnetic Resonance Imaging (MRI) data. VBM compares differences in gray and white matter volume, density, or concentration voxel-wise, while SBM identifies patterns of structural variation using independent component analysis. This study aims to compare the performance of VBM and SBM in detecting differences in brain structure across Parkinson's patients and healthy controls, grouped based on their chronotype.
View Article and Find Full Text PDFThe translation of AI-generated brain metastases (BM) segmentation into clinical practice relies heavily on diverse, high-quality annotated medical imaging datasets. The BraTS-METS 2023 challenge has gained momentum for testing and benchmarking algorithms using rigorously annotated internationally compiled real-world datasets. This study presents the results of the segmentation challenge and characterizes the challenging cases that impacted the performance of the winning algorithms.
View Article and Find Full Text PDF