Publications by authors named "Sebastiano Piccolroaz"

A multi-site, year-round dataset comprising a total of 606 high-resolution turbulence microstructure profiles of shear and temperature gradient in the upper 100 m depth is made available for Lake Garda (Italy). Concurrent meteorological data were measured from the fieldwork boat at the location of the turbulence measurements. During the fieldwork campaign (March 2017-June 2018), four different sites were sampled on a monthly basis, following a standardized protocol in terms of time-of-day and locations of the measurements.

View Article and Find Full Text PDF

Lake Baikal, lying in a rift zone in southeastern Siberia, is the world's oldest, deepest, and most voluminous lake that began to form over 30 million years ago. Cited as the "most outstanding example of a freshwater ecosystem" and designated a World Heritage Site in 1996 due to its high level of endemicity, the lake and its ecosystem have become increasingly threatened by both climate change and anthropogenic disturbance. Here, we present a record of nutrient cycling in the lake, derived from the silicon isotope composition of diatoms, which dominate aquatic primary productivity.

View Article and Find Full Text PDF

Local knowledge on surface currents and transport patterns in Lake Garda is acquired through interviews among wind-surfers, sailors, fishermen, ferry boat drivers, firefighters nautical rescue team, and officers from the environmental protection agency. Data are collected by means of individual interviews and focus groups, analyzed for internal consistency and summarized in qualitative maps. Three-dimensional numerical simulations are performed using a one-way coupled atmospheric-hydrodynamic model and the results are compared with the observations of the interviewees.

View Article and Find Full Text PDF

Ventilation mechanisms in deep lakes are crucial for their ecosystem functioning. In this paper we show the relevance of planetary rotation in affecting ventilation processes in relatively narrow, elongated deep lakes. Through a recent field campaign in Lake Garda (Italy), we provide explicit observational evidence for the development of lake-wide wind-driven secondary flows influenced by the Coriolis force in a narrow lake.

View Article and Find Full Text PDF

River water temperature is a key control of many physical and bio-chemical processes in river systems, which theoretically depends on multiple factors. Here, four different machine learning models, including multilayer perceptron neural network models (MLPNN), adaptive neuro-fuzzy inference systems (ANFIS) with fuzzy c-mean clustering algorithm (ANFIS_FC), ANFIS with grid partition method (ANFIS_GP), and ANFIS with subtractive clustering method (ANFIS_SC), were implemented to simulate daily river water temperature, using air temperature (T), river flow discharge (Q), and the components of the Gregorian calendar (CGC) as predictors. The proposed models were tested in various river systems characterized by different hydrological conditions.

View Article and Find Full Text PDF