Human cytomegalovirus (HCMV) is a beta herpesvirus that persists indefinitely in the human host through a latent infection. The polycistronic gene locus of HCMV encodes genes regulating latency and reactivation. While is pro-latency, restricting virus replication in CD34 hematopoietic progenitor cells (HPCs), overcomes this restriction and is required for reactivation.
View Article and Find Full Text PDFLiver X receptor (LXR) signaling broadly restricts virus replication; however, the mechanisms of restriction are poorly defined. Here, we demonstrate that the cellular E3 ligase LXR-inducible degrader of low-density lipoprotein receptor (IDOL) targets the human cytomegalovirus (HMCV) UL136p33 protein for turnover. encodes multiple proteins that differentially impact latency and reactivation.
View Article and Find Full Text PDFInnate immune responses are crucial for limiting virus infection. However, viruses often hijack our best defenses for viral objectives. Human Cytomegalovirus (HCMV) is a beta herpesvirus which establishes a life-long latent infection.
View Article and Find Full Text PDFUnlabelled: Innate immune responses are crucial for limiting virus infection. However, viruses often hijack our best defenses for viral objectives. Human Cytomegalovirus (HCMV) is a beta herpesvirus which establishes a life-long latent infection.
View Article and Find Full Text PDFUnlabelled: Human cytomegalovirus (HCMV) is beta herpesvirus that persists indefinitely in the human host through a protracted, latent infection. The polycistronic gene locus of HCMV encodes genes regulating latency and reactivation. While UL138 is pro-latency, restricting virus replication in CD34+ hematopoietic progenitor cells (HPCs), UL135 overcomes this restriction for reactivation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2022
Human cells encode up to 15 DNA polymerases with specialized functions in chromosomal DNA synthesis and damage repair. In contrast, complex DNA viruses, such as those of the herpesviridae family, encode a single B-family DNA polymerase. This disparity raises the possibility that DNA viruses may rely on host polymerases for synthesis through complex DNA geometries.
View Article and Find Full Text PDFSustained phosphotinositide3-kinase (PI3K) signaling is critical to the maintenance of alpha and beta herpesvirus latency. We have previously shown that the beta-herpesvirus, human cytomegalovirus (CMV), regulates epidermal growth factor receptor (EGFR), upstream of PI3K, to control states of latency and reactivation. How signaling downstream of EGFR is regulated and how this impacts CMV infection and latency is not fully understood.
View Article and Find Full Text PDFHuman cytomegalovirus, HCMV, is a betaherpesvirus that establishes a lifelong latent infection in its host that is marked by recurrent episodes of reactivation. The molecular mechanisms by which the virus and host regulate entry into and exit from latency remain poorly understood. We have previously reported that is critical for reactivation, functioning in part by overcoming suppressive effects of the latency determinant We have demonstrated a role for in diminishing cell surface levels and targeting epidermal growth factor receptor (EGFR) for turnover.
View Article and Find Full Text PDFThe maintenance of cell surface proteins is critical to the ability of a cell to sense and respond to information in its environment. As such, modulation of cell surface composition and receptor trafficking is a potentially important target of control in virus infection. Sorting endosomes (SEs) are control stations regulating the recycling or degradation of internalized plasma membrane proteins.
View Article and Find Full Text PDFHerpesviruses persist indefinitely in their host through complex and poorly defined interactions that mediate latent, chronic or productive states of infection. Human cytomegalovirus (CMV or HCMV), a ubiquitous β-herpesvirus, coordinates the expression of two viral genes, UL135 and UL138, which have opposing roles in regulating viral replication. UL135 promotes reactivation from latency and virus replication, in part, by overcoming replication-suppressive effects of UL138.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) is an evolutionarily conserved process during which cells lose epithelial characteristics and gain a migratory phenotype. Although downregulation of epithelial cadherins by Snail and other transcriptional repressors is generally considered a prerequisite for EMT, recent studies have challenged this view. Here we investigate the relationship between E-cadherin and P-cadherin expression and localization, Snail function and EMT during gastrulation in chicken embryos.
View Article and Find Full Text PDF