Publications by authors named "Sebastian Weigand"

Target analysis is employed to resolve the ground and excited state properties from simultaneously measured Femtosecond Stimulated Raman Spectra (FSRS) and Transient Absorption Spectra (TAS). FSRS is a three-pulse technique, involving picosecond Raman pump pulses and femtosecond visible pump and probe pulses. The TAS are needed to precisely estimate the properties of the Instrument Response Function.

View Article and Find Full Text PDF

We establish a general kinetic scheme for energy transfer and trapping in the photosystem I (PSI) of cyanobacteria grown under white light (WL) or far-red light (FRL) conditions. With the help of simultaneous target analysis of all emission and transient absorption datasets measured in five cyanobacterial strains, we resolved the spectral and kinetic properties of the different species present in PSI. WL-PSI can be described by Bulk Chl , two Red Chl , and a reaction center compartment (WL-RC).

View Article and Find Full Text PDF

The dynamics of molecular systems can be studied with time-resolved spectroscopy combined with model-based analysis. A Python framework for global and target analysis of time-resolved spectra is introduced with the help of three case studies. The first study, concerning broadband absorption of intersystem crossing in 4-thiothymidine, demonstrates the framework's ability to resolve vibrational wavepackets with a time resolution of ≈10 fs using damped oscillations and their associated spectra and phases.

View Article and Find Full Text PDF

Aim: To compare the number of regulatory T-cells (Tregs) measured by flow cytometry with those obtained using a real-time quantitative PCR (qPCR) method in patients suffering from inflammatory bowel disease (IBD).

Methods: Tregs percentages obtained by both flow cytometry and qPCR methods in 35 adult IBD patients, 18 out of them with Crohn´s disease (CD) and 17 with ulcerative colitis (UC) were compared to each other as well as to scores on two IBD activity questionnaires using the Harvey Bradshaw Index (HBI) for CD patients and the Simple Colitis Clinical Activity Index (SCCAI) for UC patients. The Treg percentages by flow cytometry were defined as CD4(+)CD25(high)CD127(low)FOXP3(+) cells in peripheral blood mononuclear cells, whereas the Treg percentages by qPCR method were determined as FOXP3 promoter demethylation in genomic DNA.

View Article and Find Full Text PDF