Extended defects, like threading dislocations, are detrimental to the performance of optoelectronic devices. In the scanning electron microscope, dislocations are traditionally imaged using diodes to monitor changes in backscattered electron intensity as the electron beam is scanned over the sample, with the sample positioned so the electron beam is at, or close to the Bragg angle for a crystal plane/planes. Here, we use a pixelated detector instead of single diodes, specifically an electron backscatter diffraction (EBSD) detector.
View Article and Find Full Text PDFLight emitting diodes (LEDs) in the deep ultra-violet (DUV) offer new perspectives for multiple applications ranging from 3D printing to sterilization. However, insufficient light extraction severely limits their efficiency. Nanostructured sapphire substrates in aluminum nitride based LED devices have recently shown to improve crystal growth properties, while their impact on light extraction has not been fully verified.
View Article and Find Full Text PDFNano-engineering III-nitride semiconductors offers a route to further control the optoelectronic properties, enabling novel functionalities and applications. Although a variety of lithography techniques are currently employed to nano-engineer these materials, the scalability and cost of the fabrication process can be an obstacle for large-scale manufacturing. In this paper, we report on the use of a fast, robust and flexible emerging patterning technique called Displacement Talbot lithography (DTL), to successfully nano-engineer III-nitride materials.
View Article and Find Full Text PDF