Publications by authors named "Sebastian Thieme"

The situation of limited data concerning the response to COVID-19 mRNA vaccinations in immunocom-promised children hinders evidence-based recommendations. This prospective observational study investigated humoral and T cell responses after primary BNT162b2 vaccination in secondary immunocompromised and healthy children aged 5-11 years. Participants were categorized as: children after kidney transplantation (KTx, = 9), proteinuric glomerulonephritis (GN, = 4) and healthy children (controls, = 8).

View Article and Find Full Text PDF

Nanoparticle-mediated cancer immunotherapy holds great promise, but more efforts are needed to obtain nanoformulations that result in a full scale activation of innate and adaptive immune components that specifically target the tumors. We generated a series of copper-doped TiO nanoparticles in order to tune the kinetics and full extent of Cu ion release from the remnant TiO nanocrystals. Fine-tuning nanoparticle properties resulted in a formulation of 33% Cu-doped TiO which enabled short-lived hyperactivation of dendritic cells and hereby promoted immunotherapy.

View Article and Find Full Text PDF

Here, we describe a protocol for CRISPR/Cas9-mediated gene knockout in conditionally immortalized immature dendritic cells (DCs), which can be limitlessly expanded before differentiation. This facilitates the genetic screening of DC functions including assessment of phagocytosis, cytokine production, expression of co-stimulatory or co-inhibitory molecules, and antigen presentation, as well as evaluation of the capacity to elicit anticancer immune responses . Altogether, these approaches described in this protocol allow investigators to link the genotype of DCs to their phenotype.

View Article and Find Full Text PDF

Inflammatory conditions are critically influenced by neuroimmune crosstalk. Cytokines and neurotrophic factors shape the responses of both nervous and immune systems. Although much progress has been made, most findings to date are based on expression of recombinant (tagged) proteins.

View Article and Find Full Text PDF

The metabolic modelling community has established the gold standard for bottom-up systems biology with reconstruction, validation and simulation of mechanistic genome-scale models. Similar methods have not been established for signal transduction networks, where the representation of complexes and internal states leads to scalability issues in both model formulation and execution. While rule- and agent-based methods allow efficient model definition and execution, respectively, model parametrisation introduces an additional layer of uncertainty due to the sparsity of reliably measured parameters.

View Article and Find Full Text PDF

We present a protocol for building, validating, and simulating models of signal transduction networks. These networks are challenging modeling targets due to the combinatorial complexity and sparse data, which have made it a major challenge even to formalize the current knowledge. To address this, the community has developed methods to model biomolecular reaction networks based on site dynamics.

View Article and Find Full Text PDF

Plasmacytoid dendritic cells (pDC) constitute a very rare blood cell population and play a significant role in immune response and immune-mediated disorders. Investigations on primary pDCs are hindered not only due to their rarity but also because they represent a heterogeneous cell population which is difficult to culture ex vivo. We generated a conditionally immortalized pDC line (Dox-pDC) from mice with Doxycycline-inducible SV40 Large T Antigen with a comparable immune profile to primary pDCs.

View Article and Find Full Text PDF

The X-linked histone demethylase UTX has a pivotal role in cellular and developmental processes including embryogenesis, hematopoiesis and cancer. UTX removes di- and trimethyl groups on histone H3 lysine 27, thereby regulating gene expression. But there is growing evidence that UTX displays biological functions independent of its histone demethylase activity.

View Article and Find Full Text PDF

Plasmacytoid dendritic cells (pDCs) regulate innate and adaptive immunity. Neurotrophins and their receptors control the function of neuronal tissue. In addition, they have been demonstrated to be part of the immune response but little is known about the effector immune cells involved.

View Article and Find Full Text PDF

Chronic granulomatous disease (CGD) is an inherited immunodeficiency, caused by the inability of neutrophils to produce functional NADPH oxidase required for fighting microbial infections. The X-linked form of CGD (X-CGD), which is due to mutations in the CYBB (gp91phox) gene, a component of NADPH oxidase, accounts for about two-thirds of CGD cases. We derived induced pluripotent stem cells (iPSCs) from X-CGD patient keratinocytes using a Flp recombinase excisable lentiviral reprogramming vector.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is characterized by a marked genetic heterogeneity, which complicates the development of novel therapeutics. The delineation of pathways essential within an individual patient's mutational background might overcome this limitation and facilitate personalized treatment. We report the results of a large-scale lentiviral loss-of-function RNA interference (RNAi) screen in primary leukemic cells.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSC) and factors secreted by them are essential components of the hematopoietic stem cell (HSC) niche within the bone marrow microenvironment. It has been shown that the extracellular matrix (ECM) can influence HSC-supportive potential of MSC and is a prerequisite for the proper signaling of morphogens. Therefore, we aimed at the identification of ECM components and candidate morphogens capable of enhancing the expression of HSC-supportive proteins in human MSC, namely, angiopoietin-1 (Ang-1) and stromal cell-derived factor 1 (SDF-1).

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSC) are an important component of the bone marrow microenvironment. Notch ligands expressed by MSC are known to play a regulatory role for hematopoietic stem and progenitor cells (HSPC) and in support of bone marrow homeostasis. While the role of Notch signaling in HSPC, their progeny, and MSC has been relatively well studied, little is known about the Notch-independent regulatory impact of Notch ligands on MSC themselves.

View Article and Find Full Text PDF

One of the first steps towards holistic understanding of cellular networks is the integration of the available information in a human and machine readable format. This network reconstruction process is well established for metabolic networks, and numerous genome wide metabolic reconstructions are already available. Extending these strategies to signalling networks has proven difficult, primarily due to the combinatorial nature of regulatory modifications.

View Article and Find Full Text PDF

Dendritic cells are the professional antigen presenting cells of innate immunity and key players in maintaining the balance of immune responses. Studies with dendritic cells are mainly limited by their low numbers in vivo and their difficult maintenance in vitro. We differentiated bone marrow cells from transgenic mice expressing an inducible SV40 large T-antigen into dendritic cells.

View Article and Find Full Text PDF

Regulated migration of hematopoietic stem cells is fundamental for hematopoiesis. The molecular mechanisms underlying stem cell trafficking are poorly defined. Based on a short hairpin RNA library and stromal cell-derived factor-1 (SDF-1) migration screening assay, we identified the histone 3 lysine 27 demethylase UTX (Kdm6a) as a novel regulator for hematopoietic cell migration.

View Article and Find Full Text PDF

Motivation: Fusion genes result from genomic rearrangements, such as deletions, amplifications and translocations. Such rearrangements can also frequently be observed in cancer and have been postulated as driving event in cancer development. to detect them, one needs to analyze the transition region of two segments with different copy number, the location where fusions are known to occur.

View Article and Find Full Text PDF

The melanoma cell adhesion molecule defines mesenchymal stromal cells in the human bone marrow that regenerate bone and establish a hematopoietic microenvironment in vivo. The role of the melanoma cell adhesion molecule in primary human mesenchymal stromal cells and the maintenance of hematopoietic stem and progenitor cells during ex vivo culture has not yet been demonstrated. We applied RNA interference or ectopic overexpression of the melanoma cell adhesion molecule in human mesenchymal stromal cells to evaluate the effect of the melanoma cell adhesion molecule on their proliferation and differentiation as well as its influence on co-cultivated hematopoietic stem and progenitor cells.

View Article and Find Full Text PDF

Two brothers in their fifties presented with a medical history of suspected fungal allergy, allergic bronchopulmonary aspergillosis, alveolitis, and invasive aspergillosis and pulmonary fistula, respectively. Eventually, after a delay of 50 years, chronic granulomatous disease (CGD) was diagnosed in the index patient. We found a new splice mutation in the NCF2 (p67-phox) gene, c.

View Article and Find Full Text PDF

The marine mussel Mytilus edulis and its closely related sister species are distributed world-wide and play an important role in coastal ecology and economy. The diversification in different species and their hybrids, broad ecological distribution, as well as the filter feeding mode of life has made this genus an attractive model to investigate physiological and molecular adaptations and responses to various biotic and abiotic environmental factors. In the present study we investigated the immune system of Mytilus, which may contribute to the ecological plasticity of this species.

View Article and Find Full Text PDF

Phylogenies of multi-domain proteins have to incorporate macro-evolutionary events, which dramatically increases the complexity of their construction.We present an application to infer ancestral multi-domain proteins given a species tree and domain phylogenies. As the individual domain phylogenies are often incongruent, we provide diagnostics for the identification and reconciliation of implausible topologies.

View Article and Find Full Text PDF

Objective: Internal tandem duplication (ITD) mutations of the FLT3 receptor are associated with a high incidence of relapse in acute myeloid leukemia (AML). Expression of the CXCR4 receptor in FLT3-ITD-positive AML is correlated with poor outcome, and inhibition of CXCR4 was shown to sensitize AML blasts toward chemotherapy. The aim of this study was to evaluate the impact of FLT3-ITD on cell proliferation and CXCR4-dependent migration in human hematopoietic progenitor cells and to investigate their response to CXCR4 inhibition.

View Article and Find Full Text PDF

Objective: The Notch signaling pathway has been shown to play a role in bone marrow-derived stromal cell differentiation, however, the precise outcome of Notch activation remains controversial. The aim of this study was to evaluate the effect of Notch signaling in primary human bone marrow-derived stromal cells (hBMSCs).

Materials And Methods: hBMSCs were transduced to >90% with lentiviral vectors containing either human notch1 intracellular domain (NICD), jagged1, or dominant negative mastermind1.

View Article and Find Full Text PDF

Three-dimensional (3D) bone substitute material should not only serve as scaffold in large bone defects but also attract mesenchymal stem cells, a subset of bone marrow stromal cells (BMSCs) that are able to form new bone tissue. An additional crucial step is to attract BMSCs from the surface into deeper structures of 3D porous bone substitute scaffolds. Here we show that transient overexpression of CXCR4 in human BMSCs induced by mRNA transfection enhances stromal cell-derived factor-1alpha (SDF-1alpha)-directed chemotactic capacity to invade internal compartments of porous 3D bone substitute scaffolds in vitro and in vivo.

View Article and Find Full Text PDF