Publications by authors named "Sebastian Sauppe"

Models of phonology posit a hierarchy of prosodic units that is relatively independent from syntactic structure, requiring its own parsing. It remains unexplored how this prosodic hierarchy is represented in the brain. We investigated this foundational question by means of an electroencephalography (EEG) study.

View Article and Find Full Text PDF

Human language relies on a rich cognitive machinery, partially shared with other animals. One key mechanism, however, decomposing events into causally linked agent-patient roles, has remained elusive with no known animal equivalent. In humans, agent-patient relations in event cognition drive how languages are processed neurally and expressions structured syntactically.

View Article and Find Full Text PDF

Language models based on artificial neural networks increasingly capture key aspects of how humans process sentences. Most notably, model-based surprisals predict event-related potentials such as N400 amplitudes during parsing. Assuming that these models represent realistic estimates of human linguistic experience, their success in modeling language processing raises the possibility that the human processing system relies on no other principles than the general architecture of language models and on sufficient linguistic input.

View Article and Find Full Text PDF

The language comprehension system preferentially assumes that agents come first during incremental processing. While this might reflect a biologically fixed bias, shared with other domains and other species, the evidence is limited to languages that place agents first, and so the bias could also be learned from usage frequency. Here, we probe the bias with electroencephalography (EEG) in Äiwoo, a language that by default places patients first, but where sentence-initial nouns are still locally ambiguous between patient or agent roles.

View Article and Find Full Text PDF

A central aspect of human experience and communication is understanding events in terms of agent ("doer") and patient ("undergoer" of action) roles. These event roles are rooted in general cognition and prominently encoded in language, with agents appearing as more salient and preferred over patients. An unresolved question is whether this preference for agents already operates during apprehension, that is, the earliest stage of event processing, and if so, whether the effect persists across different animacy configurations and task demands.

View Article and Find Full Text PDF

Planning to speak is a challenge for the brain, and the challenge varies between and within languages. Yet, little is known about how neural processes react to these variable challenges beyond the planning of individual words. Here, we examine how fundamental differences in syntax shape the time course of sentence planning.

View Article and Find Full Text PDF

Human experience and communication are centred on events, and event apprehension is a rapid process that draws on the visual perception and immediate categorization of event roles ("who does what to whom"). We demonstrate a role for syntactic structure in visual information uptake for event apprehension. An event structure foregrounding either the agent or patient was activated during speaking, transiently modulating the apprehension of subsequently viewed unrelated events.

View Article and Find Full Text PDF

Speech planning is a sophisticated process. In dialog, it regularly starts in overlap with an incoming turn by a conversation partner. We show that planning spoken responses in overlap with incoming turns is associated with higher processing load than planning in silence.

View Article and Find Full Text PDF

Purpose: In image-guided radiation therapy, fiducial markers or clips are often used to determine the position of the tumor. These markers lead to streak artifacts in cone-beam CT (CBCT) scans. Standard inpainting-based metal artifact reduction (MAR) methods fail to remove these artifacts in cases of large motion.

View Article and Find Full Text PDF

We propose a phase-to-amplitude resampling (PTAR) method to reduce motion blurring in motion-compensated (MoCo) 4D cone-beam CT (CBCT) image reconstruction, without increasing the computational complexity of the motion vector field (MVF) estimation approach. PTAR is able to improve the image quality in reconstructed 4D volumes, including both regular and irregular respiration patterns. The PTAR approach starts with a robust phase-gating procedure for the initial MVF estimation and then switches to a phase-adapted amplitude gating method.

View Article and Find Full Text PDF

Theories of incremental sentence production make different assumptions about when speakers encode information about described events and when verbs are selected, accordingly. An eye tracking experiment on German testing the predictions from linear and hierarchical incrementality about the timing of event encoding and verb planning is reported. In the experiment, participants described depictions of two-participant events with sentences that differed in voice and word order.

View Article and Find Full Text PDF

In conversation, interlocutors rarely leave long gaps between turns, suggesting that next speakers begin to plan their turns while listening to the previous speaker. The present experiment used analyses of speech onset latencies and eye-movements in a task-oriented dialogue paradigm to investigate when speakers start planning their responses. German speakers heard a confederate describe sets of objects in utterances that either ended in a noun [e.

View Article and Find Full Text PDF

Studies on anticipatory processes during sentence comprehension often focus on the prediction of postverbal direct objects. In subject-initial languages (the target of most studies so far), however, the position in the sentence, the syntactic function, and the semantic role of arguments are often conflated. For example, in the sentence "The frog will eat the fly" the syntactic object ("fly") is at the same time also the last word and the patient argument of the verb.

View Article and Find Full Text PDF

Purpose: Cardiac in vivo micro-CT imaging of small animals typically requires double gating due to long scan times and high respiratory rates. The simultaneous respiratory and cardiac gating can either be done prospectively or retrospectively. In any case, for true 5D imaging, i.

View Article and Find Full Text PDF