The fabrication of stable perovskite nanofilm patterns is important for the development of functional optical devices. However, current production approaches are limited by the requirement for strict inert gas protection and long processing times. Here, a confined flash printing synthesis method is presented to generate perovskite nanofilms under ambient conditions, combining precursor transfer, perovskite synthesis, crystallization, and polymer protection in a single step within milliseconds.
View Article and Find Full Text PDFIn addition to causing trillion-dollar economic losses every year, counterfeiting threatens human health, social equity and national security. Current materials for anti-counterfeiting labelling typically contain toxic inorganic quantum dots and the techniques to produce unclonable patterns require tedious fabrication or complex readout methods. Here we present a nanoprinting-assisted flash synthesis approach that generates fluorescent nanofilms with physical unclonable function micropatterns in milliseconds.
View Article and Find Full Text PDFPolymer modification plays an important role in the construction of devices, but the lack of fundamental understanding on polymer-surface adhesion limits the development of miniaturized devices. In this work, a thermoplastic polymer collection was established using the combinatorial laser-induced forward transfer technique as a research platform, to assess the adhesion of polymers to substrates of different wettability. Furthermore, it also revealed the influence of adhesion on dewetting phenomena during the laser transfer and relaxation process, resulting in polymer spots of various morphologies.
View Article and Find Full Text PDFLaser-induced forward transfer (LIFT) has the potential to be an alternative approach to atomic force microscopy based scanning probe lithography techniques, which have limitations in high-speed and large-scale patterning. However, traditional donor slides limit the resolution and chemical flexibility of LIFT. Here, a hematite nanolayer absorber for donor slides to achieve high-resolution transfers down to sub-femtoliters is proposed.
View Article and Find Full Text PDFFabrication of hybrid photoelectrodes on a subsecond timescale with low energy consumption and possessing high photocurrent densities remains a centerpiece for successful implementation of photoelectrocatalytic synthesis of fuels and value-added chemicals. Here, we introduce a laser-driven technology to print sensitizers with desired morphologies and layer thickness onto different substrates, such as glass, carbon, or carbon nitride (CN). The specially designed process uses a thin polymer reactor impregnated with transition metal salts, confining the growth of transition metal oxide (TMO) nanostructures on the interface in milliseconds, while their morphology can be tuned by the laser.
View Article and Find Full Text PDF