A detailed description of the non-linear effects in silicon is needed when designing ring resonators in the silicon platform. The optical field propagating in the ring waveguide is strongly absorbed due to two-photon-absorption (TPA) and free-carrier-absorption (FCA), which become more prominent with increasing the input power in the ring. We present a new approach for the modelling of non-linear effects in silicon based ring resonators.
View Article and Find Full Text PDFWe address the stability of a tunable hybrid laser based on a III-V Reflective Semiconductor Optical Amplifier (RSOA) edge-coupled with a Silicon Photonic (SiPh) dispersive mirror through a model of time-delayed algebraic differential equations that accounts for the narrow band mirror. Our results allow to (i) analyze the stability of single mode lasing, (ii) quantify the impact of the mirror bandwidth on the damping of the laser relaxation oscillations and the emergence of photon-photon resonance, and (iii) study the tolerance of the laser to the external optical feedback. Thanks to this analysis, we find a mirror design that gives ultra-high stability up to an external feedback level of -10 dB.
View Article and Find Full Text PDFWe present wideband and large free spectral range optical filters with steep passband edges for the selection of adjacent WDM communication channels that can be reliably fabricated with mainstream silicon photonics technology. The devices are based on three cascaded stages of coupled resonator optical waveguides loaded on a common bus waveguide. These stages differ in the number of resonators but are implemented with exactly identical unit cells, comprised of a matched racetrack resonator layout and a uniform spacing between cells.
View Article and Find Full Text PDFWe experimentally investigate an optical link relying on silicon photonics transmitter and receiver components as well as a single section semiconductor mode-locked laser as a light source and a semiconductor optical amplifier for signal amplification. A transmitter based on a silicon photonics resonant ring modulator, an external single section mode-locked laser and an external semiconductor optical amplifier operated together with a standard receiver reliably supports 14 Gbps on-off keying signaling with a signal quality factor better than 7 for 8 consecutive comb lines, as well as 25 Gbps signaling with a signal quality factor better than 7 for one isolated comb line, both without forward error correction. Resonant ring modulators and Germanium waveguide photodetectors are further hybridly integrated with chip scale driver and receiver electronics, and their co-operability tested.
View Article and Find Full Text PDFWe present a novel resonant Mach-Zehnder modulator whose arms are each loaded with five identical resonators. Size and power consumption are aggressively reduced compared to conventional modulators based on linear phase shifters. At the same time, a large optical bandwidth of 3.
View Article and Find Full Text PDFWe report on the design of Silicon Mach-Zehnder carrier depletion modulators relying on epitaxially grown vertical junction diodes. Unprecedented spatial control over doping profiles resulting from combining local ion implantation with epitaxial overgrowth enables highly linear phase shifters with high modulation efficiency and comparatively low insertion losses. A high average phase shifter efficiency of VπL = 0.
View Article and Find Full Text PDFHigh-performance silicon nitride focusing grating couplers with AlCu/TiN reflectors for a visible wavelength (660 nm) have been designed and fabricated in a standard complementary metal-oxide-semiconductor pilot line. The influence of the bottom oxide cladding thickness on the grating decay length and efficiency is theoretically and experimentally investigated. It is shown how the metal reflector not only increases the efficiency but also allows reduction of the radiated beam size.
View Article and Find Full Text PDFSilicon nitride is demonstrated as a high performance and cost-effective solution for dense integrated photonic circuits in the visible spectrum. Experimental results for nanophotonic waveguides fabricated in a standard CMOS pilot line with losses below 0.71dB/cm in an aqueous environment and 0.
View Article and Find Full Text PDF