Publications by authors named "Sebastian Pregl"

We demonstrate the functionalization of silicon nanowire based field effect transistors (SiNW FETs) FETs with stimuli-responsive polymer brushes of poly(N-isopropylacrylamide) (PNIPAAM) and poly(acrylic acid) (PAA). Surface functionalization was confirmed by atomic force microscopy, contact angle measurements, and verified electrically using a silicon nanowire based field effect transistor sensor device. For thermo-responsive PNIPAAM, the physicochemical properties (i.

View Article and Find Full Text PDF

The conjunction of miniature nanosensors and droplet-based microfluidic systems conceptually opens a new route toward sensitive, optics-less analysis of biochemical processes with high throughput, where a single device can be employed for probing of thousands of independent reactors. Here we combine droplet microfluidics with the compact silicon nanowire based field effect transistor (SiNW FET) for in-flow electrical detection of aqueous droplets one by one. We chemically probe the content of numerous (∼10(4)) droplets as independent events and resolve the pH values and ionic strengths of the encapsulated solution, resulting in a change of the source-drain current ISD through the nanowires.

View Article and Find Full Text PDF

Si nanowire (Si-NW) based thin-film transistors (TFTs) have been considered as a promising candidate for next-generation flexible and wearable electronics as well as sensor applications with high performance. Here, we have fabricated ambipolar Schottky-barrier (SB) TFTs consisting of a parallel array of Si-NWs and performed an in-depth study related to their electrical performance and operation mechanism through several electrical parameters extracted from the channel length scaling based method. Especially, the newly suggested current-voltage (I-V) contour map clearly elucidates the unique operation mechanism of the ambipolar SB-TFTs, governed by Schottky-junction between NiSi2 and Si-NW.

View Article and Find Full Text PDF

A flexible diagnostic platform is realized and its performance is demonstrated for early detection of avian influenza virus (AIV) subtype H1N1 DNA sequences. The key component of the platform is high-performance biosensors based on high output currents and low power dissipation Si nanowire field effect transistors (SiNW-FETs) fabricated on flexible 100 μm thick polyimide foils. The devices on a polymeric support are about ten times lighter compared to their rigid counterparts on Si wafers and can be prepared on large areas.

View Article and Find Full Text PDF