The selectivity with which proprioceptive sensory neurons innervate their central and peripheral targets implies that they exhibit distinctions in muscle-type identity. The molecular correlates of proprioceptor identity and its origins remain largely unknown, however. In screens to define muscle-type proprioceptor character, we find all-or-none differences in gene expression for proprioceptors that control antagonistic muscles at a single hindlimb joint.
View Article and Find Full Text PDFDuring neural circuit assembly, axonal growth cones are exposed to multiple guidance signals at trajectory choice points. While axonal responses to individual guidance cues have been extensively studied, less is known about responses to combination of signals and underlying molecular mechanisms. Here, we studied the convergence of signals directing trajectory selection of spinal motor axons entering the limb.
View Article and Find Full Text PDFClustering of Kv1 channels at the juxtaparanodal region (JXP) in myelinated axons depends on their association with the Caspr2/TAG-1 adhesion complex. The interaction between these channels and Caspr2 was suggested to depend on PDZ (PSD-95/Discs large/zona occludens-1) scaffolding proteins. Here, we show that at a subset of the JXP, PSD-93 colocalizes with Caspr2, K(+) channels and its related protein postsynaptic density protein-95 (PSD-95).
View Article and Find Full Text PDFAccumulation of Na(+) channels at the nodes of Ranvier is a prerequisite for saltatory conduction. In peripheral nerves, clustering of these channels along the axolemma is regulated by myelinating Schwann cells through a yet unknown mechanism. We report the identification of gliomedin, a glial ligand for neurofascin and NrCAM, two axonal immunoglobulin cell adhesion molecules that are associated with Na+ channels at the nodes of Ranvier.
View Article and Find Full Text PDFEfficient and rapid propagation of action potentials in myelinated axons depends on the molecular specialization of the nodes of Ranvier. The nodal region is organized into several distinct domains, each of which contains a unique set of ion channels, cell-adhesion molecules and cytoplasmic adaptor proteins. Voltage-gated Na+ channels - which are concentrated at the nodes - are separated from K+ channels - which are clustered at the juxtaparanodal region - by a specialized axoglial contact that is formed between the axon and the myelinating cell at the paranodes.
View Article and Find Full Text PDFIn myelinated axons, K+ channels are concealed under the myelin sheath in the juxtaparanodal region, where they are associated with Caspr2, a member of the neurexin superfamily. Deletion of Caspr2 in mice by gene targeting revealed that it is required to maintain K+ channels at this location. Furthermore, we show that the localization of Caspr2 and clustering of K+ channels at the juxtaparanodal region depends on the presence of TAG-1, an immunoglobulin-like cell adhesion molecule that binds Caspr2.
View Article and Find Full Text PDFVoltage-dependent potassium channels regulate membrane excitability and cell-cell communication in the mammalian nervous system, and are found highly localized at distinct neuronal subcellular sites. Kv1 (mammalian Shaker family) potassium channels and the neurexin Caspr2, both of which contain COOH-terminal PDZ domain binding peptide motifs, are found colocalized at high density at juxtaparanodes flanking nodes of Ranvier of myelinated axons. The PDZ domain-containing protein PSD-95, which clusters Kv1 potassium channels in heterologous cells, has been proposed to play a major role in potassium channel clustering in mammalian neurons.
View Article and Find Full Text PDFThe apposed membranes of myelinating Schwann cells are joined by several types of junctional specializations known as autotypic or reflexive junctions. These include tight, gap, and adherens junctions, all of which are found in regions of noncompact myelin: the paranodal loops, incisures of Schmidt-Lanterman, and mesaxons. The molecular components of autotypic tight junctions have not been established.
View Article and Find Full Text PDFAn axonal complex of cell adhesion molecules consisting of Caspr and contactin has been found to be essential for the generation of the paranodal axo-glial junctions flanking the nodes of Ranvier. Here we report that although the extracellular region of Caspr was sufficient for directing it to the paranodes in transgenic mice, retention of the Caspr-contactin complex at the junction depended on the presence of an intact cytoplasmic domain of Caspr. Using immunoelectron microscopy, we found that a Caspr mutant lacking its intracellular domain was often found within the axon instead of the junctional axolemma.
View Article and Find Full Text PDF