Publications by authors named "Sebastian Nau"

We present a reference-electrode free, all organic K sensitive ion sensing platform fabricated by simplest means on a plain sheet of paper. This platform is based on two identical ion selective electrodes (ISEs) which are assembled by bonding a polymeric ion selective membrane (ISM) directly onto a drop-casted PEDOT:PSS electrode. Taking full advantage of the so called pulsetrode concept, a current pulse is used to measure the concentration of the targeted ion.

View Article and Find Full Text PDF

A unique implementation of an organic image detector using resistive photo-switchable pixels is presented. This resistive photo-switch comprises the vertical integration of an organic photodiode and an organic resistive switching memory element. The photodiodes act as a photosensitive element while the resistive switching elements simultaneously store the detected light information.

View Article and Find Full Text PDF

The origin of resistive switching in organic devices is studied by photovoltaic methods and impedance spectroscopy. The results show that the most commonly proposed charging/discharging mechanisms can be excluded as working mechanism. There is solid evidence that resistive switching is due to the formation/rupture of filaments.

View Article and Find Full Text PDF

Highly efficient and stable blue light emission is observed in novel copolymers that are produced from specially designed building blocks. A PEDOT:PSS-induced chemical degradation of the polymer light-emitting diodes (PLEDs) is identified at the interface, and it is found to be accompanied by a shift in the emission color. A method to prevent this highly undesirable interaction is presented.

View Article and Find Full Text PDF

We present a novel core-shell-surface multifunctional structure for dendrimers using a blue fluorescent pyrene core with triphenylene dendrons and triphenylamine surface groups. We find efficient excitation energy transfer from the triphenylene shell to the pyrene core, substantially enhancing the quantum yield in solution and the solid state (4-fold) compared to dendrimers without a core emitter, while TPA groups facilitate the hole capturing and injection ability in the device applications. With a luminance of up to 1400 cd/m(2), a saturated blue emission CIE(xy) = (0.

View Article and Find Full Text PDF