Publications by authors named "Sebastian Metzner"

Fringe projection profilometry in combination with other optical measuring technologies has established itself over the last decades as an essential complement to conventional, tactile measuring devices. The non-contact, holistic reconstruction of complex geometries within fractions of a second in conjunction with the lightweight and transportable sensor design open up many fields of application in production metrology. Furthermore, triangulation-based measuring principles feature good scalability, which has led to 3D scanners for various scale ranges.

View Article and Find Full Text PDF

Higher indium incorporation in self-organized triangular nanoprisms at the edges of InGaN/GaN core-shell nanorods is directly evidenced by spectral cathodoluminescence microscopy in a scanning transmission electron microscope. The nanoprisms are terminated by three 46 nm wide a-plane nanofacets with sharp interfaces forming a well-defined equilateral triangular base in the basal plane. Redshifted InGaN luminescence and brighter Z-contrast are resolved for these structures compared to the InGaN layers on the nanorod sidewalls, which is attributed to at least 4 % higher indium content.

View Article and Find Full Text PDF

We investigate the emission from confined excitons in the structure of a single-monolayer-thick quasi-two-dimensional (quasi-2D) InGaN layer inserted in GaN matrix. This quasi-2D InGaN layer was successfully achieved by molecular beam epitaxy (MBE), and an excellent in-plane uniformity in this layer was confirmed by cathodoluminescence mapping study. The carrier dynamics have also been investigated by time-resolved and excitation-power-dependent photoluminescence, proving that the recombination occurs via confined excitons within the ultrathin quasi-2D InGaN layer even at high temperature up to ~220 K due to the enhanced exciton binding energy.

View Article and Find Full Text PDF

Nitride-based three-dimensional core-shell nanorods (NRs) are promising candidates for the achievement of highly efficient optoelectronic devices. For a detailed understanding of the complex core-shell layer structure of InGaN/GaN NRs, a systematic determination and correlation of the structural, compositional, and optical properties on a nanometer-scale is essential. In particular, the combination of low-temperature cathodoluminescence (CL) spectroscopy directly performed in a scanning transmission electron microscope (STEM), and quantitative high-angle annular dark field imaging enables a comprehensive study of the nanoscopic attributes of the individual shell layers.

View Article and Find Full Text PDF