Publications by authors named "Sebastian McClendon"

We have demonstrated that calbindin D(9k) can be converted into a calcium-sensing switch (calbindin-AFF) by duplicating the C-terminal half of the protein (residues 44-75) and appending it to the N-terminus (creating residues 44'-75'). This re-engineering results in a ligand-driven interconversion between two native folds: the wild-type structure (N) and a circularly permuted form (N'). The switch between N and N' is predicted to involve exchange of the 44-75 and 44'-75' segments, possibly linked to their respective folding and unfolding.

View Article and Find Full Text PDF

Cold denaturation is a general property of globular proteins, and the process provides insight into the origins of the cooperativity of protein folding and the nature of partially folded states. Unfortunately, studies of protein cold denaturation have been hindered by the fact that the cold denatured state is normally difficult to access experimentally. Special conditions such as addition of high concentrations of denaturant, encapsulation into reverse micelles, the formation of emulsified solutions, high pressure, or extremes of pH have been applied, but these can perturb the unfolded state of proteins.

View Article and Find Full Text PDF

Alpha-synuclein (alphaS) is the primary component of Lewy bodies, the pathological hallmark of Parkinson's Disease. Aggregation of alphaS is thought to proceed from a primarily disordered state with nascent secondary structure through intermediate conformations to oligomeric forms and finally to mature amyloid fibrils. Low pH conditions lead to conformational changes associated with increased alphaS fibril formation.

View Article and Find Full Text PDF

Parkinson's disease (PD) is associated with the deposition of fibrillar aggregates of the protein alpha-synuclein (alphaS) in neurons. Intramolecular contacts between the acidic C-terminal tail of alphaS and its N-terminal region have been proposed to regulate alphaS aggregation, and two originally described PD mutations, A30P and A53T, reportedly reduce such contacts. We find that the most recently discovered PD-linked alphaS mutation E46K, which also accelerates the aggregation of the protein, does not interfere with C-terminal-to-N-terminal contacts and instead enhances such contacts.

View Article and Find Full Text PDF

We examine here the dynamics of forming the Michaelis complex of the enzyme lactate dehydrogenase by characterizing the binding kinetics and thermodynamics of oxamate (a substrate mimic) to the binary lactate dehydrogenase/NADH complex over multiple timescales, from nanoseconds to tens of milliseconds. To access such a wide time range, we employ standard stopped-flow kinetic approaches (slower than 1 ms) and laser-induced temperature-jump relaxation spectroscopy (10 ns-10 ms). The emission from the nicotinamide ring of NADH is used as a marker of structural transformations.

View Article and Find Full Text PDF

The dynamical nature of the binding of a substrate surrogate to lactate dehydrogenase is examined on the nanoseconds to milliseconds timescale by laser-induced temperature-jump relaxation spectroscopy. Fluorescence emission of the nicotinamide group of bound NADH is used to define the pathway and kinetics of substrate binding. Assignment of specific kinetic states and elucidation of their structures are accomplished using isotope edited infrared absorption spectroscopy.

View Article and Find Full Text PDF