Publications by authors named "Sebastian Maurer"

Understanding where in the cytoplasm mRNAs are translated is increasingly recognized as being as important as knowing the timing and level of protein expression. mRNAs are localized via active motor-driven transport along microtubules (MTs) but the underlying essential factors and dynamic interactions are largely unknown. Using biochemical in vitro reconstitutions with purified mammalian proteins, multicolor TIRF-microscopy, and interaction kinetics measurements, we show that adenomatous polyposis coli (APC) enables kinesin-1- and kinesin-2-based mRNA transport, and that APC is an ideal adaptor for long-range mRNA transport as it forms highly stable complexes with 3'UTR fragments of several neuronal mRNAs (APC-RNPs).

View Article and Find Full Text PDF

Motor protein-driven transport of mRNAs on microtubules and their local translation underlie important neuronal functions such as development, growth cone steering, and synaptic plasticity. While there is abundant data on how membrane-bound cargoes such as vesicles, endosomes, or mitochondria are coupled to motor proteins, surprisingly little is known on the direct interactions of RNA-protein complexes and kinesins or dynein. Provided the potential building blocks are identified, in vitro reconstitutions coupled to Total Internal Reflection Microscopy (TIRF-M) are a powerful and highly sensitive tool to understand how single molecules dynamically interact to assemble into functional complexes.

View Article and Find Full Text PDF
Article Synopsis
  • Neurons transport hundreds of messenger RNAs (mRNAs) in small packages to form local protein networks that enable specialized functions.
  • Current understanding highlights the challenges of sorting different mRNA cargoes and their coupling to motor proteins, with limited knowledge on whether all mRNAs use the same transport machinery.
  • The text advocates for future research combining various methods to clarify the critical interactions between mRNAs and motor proteins involved in transport processes.
View Article and Find Full Text PDF

RNA-binding proteins (RBPs) are crucial factors of post-transcriptional gene regulation and their modes of action are intensely investigated. At the center of attention are RNA motifs that guide where RBPs bind. However, sequence motifs are often poor predictors of RBP-RNA interactions in vivo.

View Article and Find Full Text PDF

Through the asymmetric distribution of messenger RNAs (mRNAs), cells spatially regulate gene expression to create cytoplasmic domains with specialized functions. In neurons, mRNA localization is required for essential processes such as cell polarization, migration, and synaptic plasticity underlying long-term memory formation. The essential components driving cytoplasmic mRNA transport in neurons and mammalian cells are not known.

View Article and Find Full Text PDF

Understanding which proteins and RNAs directly interact is crucial for revealing cellular mechanisms of gene regulation. Efficient methods allowing to detect RNA-protein interactions and dissect the underlying molecular origin for RNA-binding protein (RBP) specificity are in high demand. The recently developed recombination-Y3H screening (rec-Y3H) enabled many-by-many detection of interactions between pools of proteins and RNA fragments for the first time.

View Article and Find Full Text PDF

High-fidelity chromosome segregation relies on proper microtubule regulation. Kinesin-8 has been shown to destabilise microtubules to reduce metaphase spindle length and chromosome movements in multiple species. XMAP215/chTOG polymerases catalyse microtubule growth for spindle assembly, elongation and kinetochore-microtubule attachment.

View Article and Find Full Text PDF

Knowing which proteins and RNAs directly interact is essential for understanding cellular mechanisms. Unfortunately, discovering such interactions is costly and often unreliable. To overcome these limitations, we developed rec-YnH, a new yeast two and three-hybrid-based screening pipeline capable of detecting interactions within protein libraries or between protein libraries and RNA fragment pools.

View Article and Find Full Text PDF

The Ndc80 complex is a conserved outer kinetochore protein complex consisting of Ndc80 (Hec1), Nuf2, Spc24 and Spc25. This complex comprises a major, if not the sole, platform with which the plus ends of the spindle microtubules directly interact. In fission yeast, several studies indicate that multiple microtubule-associated proteins including the Dis1/chTOG microtubule polymerase and the Mal3/EB1 microtubule plus-end tracking protein directly or indirectly bind Ndc80, thereby ensuring stable kinetochore-microtubule attachment.

View Article and Find Full Text PDF

Dynamic microtubule plus-ends interact with various intracellular target regions such as the cell cortex and the kinetochore. Two conserved families of microtubule plus-end-tracking proteins, the XMAP215, ch-TOG or CKAP5 family and the end-binding 1 (EB1, also known as MAPRE1) family, play pivotal roles in regulating microtubule dynamics. Here, we study the functional interplay between fission yeast Dis1, a member of the XMAP215/TOG family, and Mal3, an EB1 protein.

View Article and Find Full Text PDF

The bacterial gene regulatory regions often demonstrate distinctly organized arrays of RNA polymerase binding sites of ill-defined function. Previously we observed a module of closely spaced polymerase binding sites upstream of the canonical promoter of the Escherichia coli fis operon. FIS is an abundant nucleoid-associated protein involved in adjusting the chromosomal DNA topology to changing cellular physiology.

View Article and Find Full Text PDF

End-binding proteins (EBs) have the ability to autonomously track the ends of growing microtubules, where they recruit several proteins that control various aspects of microtubule cytoskeleton organization and function. The structural nature of the binding site recognized by EBs at growing microtubule ends has been a subject of debate. Recently, a fluorescence microscopy assay used for the study of dynamic end tracking in vitro was adapted for cryoelectron microscopy (cryo-EM).

View Article and Find Full Text PDF

Background: The dynamic properties of microtubules depend on complex nanoscale structural rearrangements in their end regions. Members of the EB1 and XMAP215 protein families interact autonomously with microtubule ends. EB1 recruits several other proteins to growing microtubule ends and has seemingly antagonistic effects on microtubule dynamics: it induces catastrophes, and it increases growth velocity, as does the polymerase XMAP215.

View Article and Find Full Text PDF

The microtubule cytoskeleton is crucial for the intracellular organization of eukaryotic cells. It is a dynamic scaffold that has to perform a variety of very different functions. This multitasking is achieved through the activity of numerous microtubule-associated proteins.

View Article and Find Full Text PDF

Growing microtubule ends serve as transient binding platforms for essential proteins that regulate microtubule dynamics and their interactions with cellular substructures. End-binding proteins (EBs) autonomously recognize an extended region at growing microtubule ends with unknown structural characteristics and then recruit other factors to the dynamic end structure. Using cryo-electron microscopy, subnanometer single-particle reconstruction, and fluorescence imaging, we present a pseudoatomic model of how the calponin homology (CH) domain of the fission yeast EB Mal3 binds to the end regions of growing microtubules.

View Article and Find Full Text PDF

Microtubule plus-end-tracking proteins (+TIPs) localize to growing microtubule plus ends to regulate a multitude of essential microtubule functions. End-binding proteins (EBs) form the core of this network by recognizing a distinct structural feature transiently existing in an extended region at growing microtubule ends and by recruiting other +TIPs to this region. The nature of the conformational difference allowing EBs to discriminate between tubulins in this region and other potential tubulin binding sites farther away from the microtubule end is unknown.

View Article and Find Full Text PDF

Bacterial nucleoid is a dynamic entity that changes its three-dimensional shape and compaction depending on cellular physiology. While these changes are tightly associated with compositional alterations of abundant nucleoid-associated proteins implicated in reshaping the nucleoid, their cooperation in regular long-range DNA organization is poorly understood. In this study, we reconstitute a novel nucleoprotein structure in vitro, which is stabilized by cooperative effects of major bacterial DNA architectural proteins.

View Article and Find Full Text PDF

Using high-resolution atomic force microscopy (AFM) we show that in a ternary complex of an activator protein, FIS, and RNA polymerase containing the sigma(70) specificity factor at the Escherichia coli tyrT promoter the polymerase and the activator form discrete, but connected, subcomplexes in close proximity. This is the first time that a ternary complex between an activator, a sigma(70) polymerase holoenzyme and promoter DNA has been visualised. Individually FIS and RNA polymerase wrap approximately 80 and 150 bp of promoter DNA, respectively.

View Article and Find Full Text PDF

A powerful approach to explore gene function is the use of tetracycline-regulated expression. Here, we report the establishment of this titratable gene expression system for Ustilago maydis. Obstacles of premature polyadenylation of the native tetR gene, high basal activity of the tetracycline-responsive promoter, and toxicity of the viral activation domain were overcome by designing a synthetic tetR* gene according to context-dependent codon usage, removing cryptic enhancer elements from the promoter, and using an acidic minimal activation domain, respectively.

View Article and Find Full Text PDF