This article presents the results of an analysis regarding the microstructure, mechanical strength, and microhardness of two kinds of samples built through selective laser melting with Inconel 718, the most frequently used alloy in metal additive manufacturing due to its excellent mechanical properties. The sample geometry was made up of two types of lattice structures with spherical and hyperbolical stiffness elements. The goals of these studies are to determine how homogenization heat treatment influences the microhardness and the mechanical properties of the specimens and to identify the structure with the best mechanical properties.
View Article and Find Full Text PDFSound-absorbing panels are widely used in the acoustic design of aircraft parts, buildings and vehicles as well as in sound insulation and absorption in areas with heavy traffic. This paper studied the acoustic properties of sound-absorbing panels manufactured with three nozzle diameters (0.4 mm, 0.
View Article and Find Full Text PDFSustainable building materials with excellent thermal stability and sound insulation are crucial for eco-friendly construction. This study investigates biocomposites made from cellulose pulp reinforced with beeswax, fir resin, and natural fillers like horsetail, rice flour, and fir needles. Eight formulations were obtained, and their thermal resistance, oxidation temperature, and acoustic properties were evaluated.
View Article and Find Full Text PDFThe 3D printing process allows complex structures to be obtained with low environmental impact using biodegradable materials. This work aims to develop and acoustically characterize 3D-printed panels using three types of materials, each manufactured at five infill densities (20%, 40%, 60%, 80% and 100%) with three internal configurations based on circular, triangular, and corrugated profiles. The highest absorption coefficient values (α = 0.
View Article and Find Full Text PDFThe first part of this paper is dedicated to obtaining 3D-printed molds using poly lactic acid (PLA) incorporating specific patterns, which have the potential to serve as the foundation for sound-absorbing panels for various industries and aviation. The molding production process was utilized to create all-natural environmentally friendly composites. These composites mainly comprise paper, beeswax, and fir resin, including automotive function as the matrices and binders.
View Article and Find Full Text PDFFused Filament Fabrication (FFF) is one of the frequently used material extrusion (MEX) additive manufacturing processes due to its ability to manufacture functional components with complex geometry, but their properties depend on the process parameters. This paper focuses on studying the effects of process parameters, namely infill density (25%, 50%, 75%, and 100%), on the mechanical and thermal response of the samples made of poly(lactic acid) (PLA) reinforced with short glass fibers (GF) produced using FFF process. To perform a comprehensive analysis, tensile, flexural, compression, differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA) tests were used.
View Article and Find Full Text PDFAdditive manufacturing, through the process of thermoplastic extrusion of filament, allows the manufacture of complex composite sandwich structures in a short time with low costs. This paper presents the design and fabrication by Fused Filament Fabrication (FFF) of composite sandwich structures with short fibers, having three core types C, Z, and H, followed by mechanical performance testing of the structures for compression and bending in three points. Flatwise compression tests and three-point bending have clearly indicated the superior performance of H-core sandwich structures due to dense core structures.
View Article and Find Full Text PDFIn three-dimensional (3D) printing, one of the main parameters influencing the properties of 3D-printed materials is the infill density (ID). This paper presents the influence of ID on the microstructure, mechanical, and thermal properties of carbon fiber-reinforced composites, commercially available, manufactured by the Fused Filament Fabrication (FFF) process. The samples were manufactured using FFF by varying the infill density (25%, 50%, 75%, and 100%) and were subjected to tensile tests, three-point bending, and thermal analyses by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA).
View Article and Find Full Text PDFFrom a scientific point of view, heat transfer is different in solar furnaces compared with classical ones and the influence of direct concentrated solar radiation on sintered parts needs to be studied in detail to determine the feasibility of solar furnaces in manufacturing small workpieces. This study was performed on cylindrical samples with controlled morphology obtained by a powder metallurgy 3D printing technique. All samples were heated with a heating rate of 120 ± 10 °C/minute, with 0, 1, 2, 3, 4 and 5 min holding times at 900 °C and 930 °C.
View Article and Find Full Text PDFAdditive manufacturing (AM) techniques can help to reduce the time and cost for manufacturing complex shaped parts. The main goal of this research was to determine the best strength structure of six different types of lattice cells, manufactured using the Poly Jet AM technology. In order to perform the tests, six samples with the same structure were created for each lattice type.
View Article and Find Full Text PDFMaterial Extrusion-Based Additive Manufacturing Process (ME-AMP) via Fused Filament Fabrication (FFF) offers a higher geometric flexibility than conventional technologies to fabricate thermoplastic lightweight sandwich structures. This study used polylactic acid/polyhydroxyalkanoate (PLA/PHA) biodegradable material and a 3D printer to manufacture lightweight sandwich structures with honeycomb, diamond-celled and corrugated core shapes as a single part. In this paper, compression, three-point bending and tensile tests were performed to evaluate the performance of lightweight sandwich structures with different core topologies.
View Article and Find Full Text PDFThe evaluation of the reliability and the lifetime of aerospace components has become an important segment of the design stage. The aeronautical components are subjected to complex, rigorous tests and have a long test life. The main goal in the field of aviation is to have components with high reliability and quality and to meet the mandatory requirements and regulations.
View Article and Find Full Text PDFThe utilization of polymer-based materials is quickly expanding. The enterprises of today are progressively seeking techniques to supplant metal parts with polymer-based materials as a result of their light weight, simple support and modest costs. The ceaselessly developing requirement for composite materials with new or enhanced properties brings about the preparation of different polymer mixes with various arrangements, morphologies and properties.
View Article and Find Full Text PDF