Publications by authors named "Sebastian Loescher"

Structures in living systems cross-regulate via exchange of molecular information to assemble or disassemble on demand and in a coordinated, signal-triggered fashion. DNA strand displacement (DSD) reaction networks allow rational design of signaling and feedback loops, but combining DSD with structural nanotechnology to achieve self-reconfiguring hierarchical system states is still in its infancy. We introduce modular DSD networks with increasing amounts of regulatory functions, such as negative feedback, signal amplification, and signal thresholding, to cross-regulate the transient polymerization/depolymerization of two self-sorting DNA origami nanofibrils and nanotubes.

View Article and Find Full Text PDF

There exists a critical need in biomedical molecular imaging and diagnostics for molecular sensors that report on slight changes to their local microenvironment with high spatial fidelity. Herein, a modular fluorescent probe, termed StyPy, is rationally designed which features i) an enormous and tunable Stokes shift based on twisted intramolecular charge transfer (TICT) processes with no overlap, a broad emission in the far-red/near-infrared (NIR) region of light and extraordinary quantum yields of fluorescence, ii) a modular applicability via facile -fluoro-thiol reaction (PFTR), and iii) a polarity- and viscosity-dependent emission. This renders StyPy as a particularly promising molecular sensor.

View Article and Find Full Text PDF

Multivalent interaction is an important principle for self-assembly and has been widely used to assemble colloids. However, surface binding partners are statistically distributed, which falls short of the interaction possibilities arising from geometrically controlled multivalency patterns as seen in viruses. Herein, the precision provided by 3D DNA origami is exploited to introduce multivalency pattern recognition via designing geometrically precise interaction patterns at patches of patchy nanocylinders.

View Article and Find Full Text PDF

Microgels are soft colloids that show responsive behavior and are easy to functionalize for applications. They are considered key components for future smart colloidal material systems. However, so far microgel systems have almost exclusively been studied in classical responsive switching settings using external triggers, while internally organized, autonomous control mechanisms as found in supramolecular chemistry and DNA nanotechnology relying on fuel-driven out-of-equilibrium concepts have not been implemented into microgel systems.

View Article and Find Full Text PDF

Nanostructures derived from amphiphilic DNA-polymer conjugates have emerged prominently due to their rich self-assembly behavior; however, their synthesis is traditionally challenging. Here, we report a novel platform technology towards DNA-polymer nanostructures of various shapes by leveraging polymerization-induced self-assembly (PISA) for polymerization from single-stranded DNA (ssDNA). A "grafting from" protocol for thermal RAFT polymerization from ssDNA under ambient conditions was developed and utilized for the synthesis of functional DNA-polymer conjugates and DNA-diblock conjugates derived from acrylates and acrylamides.

View Article and Find Full Text PDF

We introduce divalent 3D DNA origami cuboids as truly monodisperse colloids and harness their ability for precision functionalization with defined patches and defined numbers of supramolecular binding motifs. We demonstrate that even adamantane/β-cyclodextrin host/guest inclusion complexes of moderate association strength can induce efficient supracolloidal fibrillization at high dilution of the 3D DNA Origami as a result of cooperative multivalency. We show details on the assembly of Janus and non-Janus 3D DNA origami into supracolloidal homo- and heterofibrils with respect to multivalency effects, electrostatic screening, and stoichiometry.

View Article and Find Full Text PDF

DNA has traditionally been used for the programmable design of nanostructures by exploiting its sequence-defined supramolecular recognition. However, control on larger length scales or even hierarchical materials that translate to the macroscale remain difficult to construct. Here, we show that the polymer character of single-stranded DNA (ssDNA) can be activated via a nucleobase-specific lower critical solution temperature, which provides a unique access to mesoscale structuring mechanisms on larger length scales.

View Article and Find Full Text PDF

Scaffold-based lattice-engineered 3D DNA origami is a powerful and versatile technique for the rational design and build-up of arbitrarily structured and monodisperse DNA-based 3D nanoobjects. Relying on the unsurpassed molecular programmability of sequence-specific DNA hybridization, a long DNA single strand (termed scaffold) is assembled with many short single-stranded oligomers (termed staples), which organize the scaffold into a 3D lattice in a single step, thereby leading to 3D nanoparticulate structures of the highest precision in high yields. Applications of 3D DNA origami are increasingly wide-spread and interface with numerous fields of sciences, for example, anisometric or anisotropically functionalized nanoparticles, fundamental investigations of superstructure formation, biomedicine, (bio)physics, sensors, and optical materials.

View Article and Find Full Text PDF

Soft photonic materials are important for sensors, displays, or energy management and have become switchable under static equilibrium conditions by integration of responsive polymer features. The next step is to equip such materials with the ability for autonomously dynamic and self-regulating behavior, which would advance their functionality and application possibilities to new levels. Here, this study shows the system integration of a nonlinear, biocatalytic pH-feedback system with a pH-responsive block copolymer photonic gel, and demonstrates autonomous transient memories, remotely controlled signal propagation, and sensing.

View Article and Find Full Text PDF

Visible-light-mediated photoredox-catalyzed aldimine-aniline and aldehyde-aniline couplings have been realized. The reductive single electron transfer (SET) umpolung of various carbonyl derivatives enabled the generation of intermediary ketyl and α-amino radical anions, which were utilized for the synthesis of unsymmetrically substituted 1,2-diamines and amino alcohols.

View Article and Find Full Text PDF

Ketyl radical and amino radical anions, valuable reactive intermediates for C-C bond-forming reactions, are accessible through a C=O/C=NR umpolung. However, their utilization in catalysis remains largely underdeveloped owing to the high reduction potential of carbonyl compounds and imines. In the context of photoredox catalysis, tertiary amines are commonly employed as sacrificial co-reducing agents.

View Article and Find Full Text PDF