Silicon is a promising negative electrode material for solid-state batteries (SSBs) due to its high specific capacity and ability to prevent lithium dendrite formation. However, SSBs with silicon electrodes currently suffer from poor cycling stability, despite chemical engineering efforts. This study investigates the cycling failure mechanism of composite Si/LiPSCl electrodes by decoupling the effects of interface chemical degradation and mechanical cracking.
View Article and Find Full Text PDFDeveloping solid-state batteries (SSB) with a lithium metal electrode (LME) using only one type of solid electrolyte (SE) is a significant challenge since no SE fits all the requirements imposed by both electrodes. A possible solution is using multilayer SSBs with an LME where the drawbacks of each SE are overcome by using layers of different SEs. However, research on inorganic SE|SE heteroionic interfaces is still quite preliminary, especially regarding oxide|sulfide heteroionic interfaces.
View Article and Find Full Text PDF