Publications by authors named "Sebastian Kugler"

Neurons pose a particular challenge to degradative processes like autophagy due to their long and thin processes. Autophagic vesicles (AVs) are formed at the tip of the axon and transported back to the soma. This transport is essential since the final degradation of the vesicular content occurs only close to or in the soma.

View Article and Find Full Text PDF

Background: Presence of autoantibodies against α-synuclein (α-syn AAb) in serum of the general population has been widely reported. That such peripheral factors may be involved in central nervous system pathophysiology was demonstrated by detection of immunoglobulins (IgGs) in cerebrospinal fluid and brain of Parkinson's disease (PD) patients. Thus, blood-borne IgGs may reach the brain parenchyma through an impaired blood-brain barrier (BBB).

View Article and Find Full Text PDF

Gene variants in are implicated to cause Noonan syndrome associated with a severe and early-onset hypertrophic cardiomyopathy. Mechanistically, deficiency results in accumulation of RAS GTPases and, as a consequence, in RAS-MAPK signaling hyperactivity, thereby causing the Noonan syndrome-associated phenotype. Despite its epidemiological relevance, pharmacological as well as invasive therapies remain limited.

View Article and Find Full Text PDF

Synapse formation is critical for the wiring of neural circuits in the developing brain. The synaptic scaffolding protein S-SCAM/MAGI-2 has important roles in the assembly of signaling complexes at post-synaptic densities. However, the role of S-SCAM in establishing the entire synapse is not known.

View Article and Find Full Text PDF

Aims: Fibroblast growth factor (FGF) signalling is dysregulated in multiple sclerosis (MS) and other neurological and psychiatric conditions, but there is little or no consensus as to how individual FGF family members contribute to disease pathogenesis. Lesion development in MS is associated with increased expression of FGF1, FGF2 and FGF9, all of which modulate remyelination in a variety of experimental settings. However, FGF9 is also selectively upregulated in major depressive disorder (MDD), prompting us to speculate it may also have a direct effect on neuronal function and survival.

View Article and Find Full Text PDF

Background: The allergists´ tool box in cat allergy management is limited. Clinical studies have shown that holo beta-lactoglobulin (holoBLG) can restore micronutritional deficits in atopic immune cells and alleviate allergic symptoms in a completely allergen-nonspecific manner. With this study, we aimed to provide proof of principle in cat allergy.

View Article and Find Full Text PDF

α-synuclein (α-Syn) is intimately linked to synucleinopathies like Parkinson's disease and dementia with Lewy bodies. However, the pathophysiological mechanisms that are triggered by this protein are still largely enigmatic. α-Syn overabundance may cause neurodegeneration through protein accumulation and mitochondrial deterioration but may also result in pathomechanisms independent from neuronal cell death.

View Article and Find Full Text PDF

Several studies have investigated if the levels of α-synuclein autoantibodies (α-syn AAb) differ in serum of Parkinson's disease (PD) patients and healthy subjects. Reproducible differences in their levels could serve as a biomarker for PD. The results of previous studies however remain inconclusive.

View Article and Find Full Text PDF

Gene therapy in its current design is an irreversible process. It cannot be stopped in case of unwanted side effects, nor can expression levels of therapeutics be adjusted to individual patient's needs. Thus, the Gene-Switch (GS) system for pharmacologically regulable neurotrophic factor expression was established for treatment of parkinsonian patients.

View Article and Find Full Text PDF

Background: Since the outbreak of the coronavirus pandemic, the population in Germany has been asked to wear face masks in public areas. The masks are accepted by the public. People with a pollen allergy have an interest in knowing whether masks can also provide protection against pollen and thus prevent symptoms even without medication.

View Article and Find Full Text PDF

Beta (ß)-synuclein (ß-Syn) has long been considered to be an attenuator for the neuropathological effects caused by the Parkinson's disease-related alpha (α)-synuclein (α-Syn) protein. However, recent studies demonstrated that overabundant ß-Syn can form aggregates and induce neurodegeneration in central nervous system (CNS) neurons in vitro and in vivo, albeit at a slower pace as compared with α-Syn. Here, we demonstrate that ß-Syn mutants V70M, detected in a sporadic case of dementia with Lewy bodies (DLB), and P123H, detected in a familial case of DLB, robustly aggravate the neurotoxic potential of ß-Syn.

View Article and Find Full Text PDF

Genetic modification of non-human primates (NHP) paves the way for realistic disease models. The common marmoset is a NHP species increasingly used in biomedical research. Despite the invention of RNA-guided nucleases, one strategy for protein overexpression in NHP is still lentiviral transduction.

View Article and Find Full Text PDF

Exosomal transfers represent an important mode of intercellular communication. Syntenin is a small scaffold protein that, when binding ALIX, can direct endocytosed syndecans and syndecan cargo to budding endosomal membranes, supporting the formation of intraluminal vesicles that compose the source of a major class of exosomes. Syntenin, however, can also support the recycling of these same components to the cell surface.

View Article and Find Full Text PDF

Non-surgical gene delivery to the brain can be achieved following intravenous injection of viral vectors coupled with transcranial MRI-guided focused ultrasound (MRIgFUS) to temporarily and locally permeabilize the blood-brain barrier. Vector and promoter selection can provide neuronal expression in the brain, while limiting biodistribution and expression in peripheral organs. To date, the biodistribution of adeno-associated viruses (AAVs) within peripheral organs had not been quantified following intravenous injection and MRIgFUS delivery to the brain.

View Article and Find Full Text PDF

Background: Allergic rhinitis/rhinoconjunctivitis is the most common immune disease worldwide, but still largely underestimated, underdiagnosed, and undertreated. Dysbiosis and reduced microbial diversity is linked to the development of allergies, and the immunomodulatory effects of pro- and prebiotics might be used to counteract microbiome dysbiosis in allergy. Adequate symbiotic (multi-strain pro-, plus prebiotic) supplementation can be suggested as a complementary approach in the management of allergic rhinitis.

View Article and Find Full Text PDF

Rett syndrome (RTT) is a neurodevelopmental disorder associated with disturbed neuronal responsiveness and impaired neuronal network function. Furthermore, mitochondrial alterations and a weakened cellular redox-homeostasis are considered part of the complex pathogenesis. So far, overshooting redox-responses of MeCP2-deficient neurons were observed during oxidant-mediated stress, hypoxia and mitochondrial inhibition.

View Article and Find Full Text PDF

A contribution of α-Synuclein (α-Syn) to etiology of Parkinson´s disease (PD) and Dementia with Lewy bodies (DLB) is currently undisputed, while the impact of the closely related β-Synuclein (β-Syn) on these disorders remains enigmatic. β-Syn has long been considered to be an attenuator of the neurotoxic effects of α-Syn, but in a rodent model of PD β-Syn induced robust neurodegeneration in dopaminergic neurons of the substantia nigra. Given that dopaminergic nigral neurons are selectively vulnerable to neurodegeneration in PD, we now investigated if dopamine can promote the neurodegenerative potential of β-Syn.

View Article and Find Full Text PDF

A major hallmark of Parkinson's disease is loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The pathophysiological mechanisms causing this relatively selective neurodegeneration are poorly understood, and thus experimental systems allowing to study dopaminergic neuron dysfunction are needed. Induced pluripotent stem cells (iPSCs) differentiated toward a dopaminergic neuronal phenotype offer a valuable source to generate human dopaminergic neurons.

View Article and Find Full Text PDF
Article Synopsis
  • Gene therapy targeting neurodegenerative disorders can utilize the glial fibrillary acidic protein (GFAP) promoter to boost transgene expression near amyloid-beta plaques associated with Alzheimer's disease.
  • The study employed MRI-guided focused ultrasound with microbubbles to increase the blood-brain barrier's permeability, allowing for targeted delivery of viral vectors to specific brain regions in mouse models.
  • Results showed that using the GFAP promoter led to stronger transgene expression in areas with amyloid plaques compared to a standard promoter, indicating potential advantages for future therapies aimed at neurological conditions.
View Article and Find Full Text PDF

Neurons with a desired neurotransmitter phenotype can be differentiated from induced pluripotent stem cells or from somatic cells only through tedious protocols with relatively low yield. Readily available cortical neurons isolated from embryonic rat brain, which have already undergone a complete neuronal differentiation process, might serve as alternative template source. These cultures consist of 85% glutamatergic and 15% GABAergic neurons, and we attempted to trans-differentiate them into dopaminergic neurons.

View Article and Find Full Text PDF

Rett syndrome (RTT), an X chromosome-linked neurodevelopmental disorder affecting almost exclusively females, is associated with various mitochondrial alterations. Mitochondria are swollen, show altered respiratory rates, and their inner membrane is leaking protons. To advance the understanding of these disturbances and clarify their link to redox impairment and oxidative stress, we assessed mitochondrial respiration in defined brain regions and cardiac tissue of male wildtype (WT) and MeCP2-deficient ( ) mice.

View Article and Find Full Text PDF

In this Article, owing to an error during the production process, the y-axis label of Fig. 2c should read "Number of T cells" rather than "Number of T1 cells" and the left and right panels of Fig. 4 should be labelled 'a' and 'b', respectively.

View Article and Find Full Text PDF

The grey matter is a central target of pathological processes in neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. The grey matter is often also affected in multiple sclerosis, an autoimmune disease of the central nervous system. The mechanisms that underlie grey matter inflammation and degeneration in multiple sclerosis are not well understood.

View Article and Find Full Text PDF