Publications by authors named "Sebastian Kloth"

On the basis of molecular dynamics simulations of water and ethanol in nanopores, we devise a methodology to determine the free-energy landscape (FEL) imposed by an interface on an adjoining liquid directly from the particle trajectories. The methodology merely uses the statistical mechanical relation between occupancy and energy and, hence, is particularly suitable in complex situations, e.g.

View Article and Find Full Text PDF

We investigate water dynamics in mesoporous silica across partial crystallization by combining broadband dielectric spectroscopy (BDS), nuclear magnetic resonance (NMR), and molecular dynamics simulations (MDS). Exploiting the fact that not only BDS but also NMR field-cycling relaxometry and stimulated-echo experiments provide access to dynamical susceptibilities in broad frequency and temperature ranges, we study both the fully liquid state above the melting point Tm and the dynamics of coexisting water and ice phases below this temperature. It is found that partial crystallization leads to a change in the temperature dependence of rotational correlation times τ, which occurs in addition to previously reported dynamical crossovers of confined water and depends on the pore diameter.

View Article and Find Full Text PDF

Polyethylene glycol (PEG) is one of the environmentally benign solvent options for green chemistry. It readily absorbs water when exposed to the atmosphere. The Molecular Dynamics (MD) simulations of PEG200, a commercial mixture of low molecular weight polyethyelene glycol oligomers, as well as di-, tetra-, and hexaethylene glycol are presented to study the effect of added water impurities up to a weight fraction of 0.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulations are reported for [polyethylene glycol (PEG)200], a polydisperse mixture of ethylene glycol oligomers with an average molar weight of 200 g·mol. As a first step, available force fields for describing ethylene glycol oligomers were tested on how accurately they reproduced experimental properties. They were found to all fall short on either reproducing density, a static property, or the self-diffusion coefficient, a dynamic property.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulations are a powerful tool for detailed studies of altered properties of liquids in confinement, in particular, of changed structures and dynamics. They allow, on one hand, for perfect control and systematic variation of the geometries and interactions inherent in confinement situations and, on the other hand, for type-selective and position-resolved analyses of a huge variety of structural and dynamical parameters. Here, we review MD simulation studies on various types of liquids and confinements.

View Article and Find Full Text PDF

We study the relation between the translational and rotational motions of liquids, which is anticipated in the framework of the Stokes-Einstein-Debye (SED) treatment. For this purpose, we exploit the fact that H field-cycling nuclear magnetic resonance relaxometry and molecular dynamics simulations provide access to both modes of motion. The experimental and computational findings are fully consistent and show that the time-scale separation between translation and rotation increases from the van der Waals liquid -terphenyl over ethylene glycol to the hydrogen-bonded liquid glycerol, indicating an increasing degree of breakdown of the SED relation.

View Article and Find Full Text PDF

Nanoscale water clusters in an ionic liquid matrix, also called "water pockets," were previously found in some mixtures of water with ionic liquids containing hydrophilic anions. However, in these systems, at least partial crystallization occurs upon supercooling. In this work, we show for mixtures of 1-butyl-3-methylimidazolium dicyanamide with water that none of the components crystallizes up to a water content of 72 mol.

View Article and Find Full Text PDF

Room-temperature ionic liquids (RTILs) stand out among molecular liquids for their rich physicochemical characteristics, including structural and dynamic heterogeneity. The significance of electrostatic interactions in RTILs results in long characteristic length- and timescales, and has motivated the development of a number of coarse-grained (CG) simulation models. In this study, we aim to better understand the connection between certain CG parameterization strategies and the dynamical properties and transferability of the resulting models.

View Article and Find Full Text PDF

We perform molecular dynamics simulations to study the structure and dynamics of the ionic liquid [Omim][TFSI] in a broad temperature range. A particular focus is the progressing nanoscale segregation into polar and nonpolar regions upon cooling. As this analysis requires simulations of large systems for long times, we use the iterative Boltzmann inversion method to develop a new coarse-grained (CG) model from a successful all-atom (AA) model.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionq3gr68ej4j5k1f3blk9474jep53lc2lk): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once