During the last ten years, developments in cryo-electron microscopy have transformed our understanding of eukaryotic ribosome assembly. As a result, the field has advanced from a list of the vast array of ribosome assembly factors toward an emerging molecular movie in which individual frames are represented by structures of stable ribosome assembly intermediates with complementary biochemical and genetic data. In this review, we discuss the mechanisms driving the assembly of yeast and human small and large ribosomal subunits.
View Article and Find Full Text PDFDuring the early stages of human large ribosomal subunit (60) biogenesis, an ensemble of assembly factors establishes and fine-tunes the essential RNA functional centers of pre-60 particles by an unknown mechanism. Here, we report a series of cryo-electron microscopy structures of human nucleolar and nuclear pre-60 assembly intermediates at resolutions of 2.5 to 3.
View Article and Find Full Text PDFDuring transcription of eukaryotic ribosomal DNA in the nucleolus, assembly checkpoints exist that guarantee the formation of stable precursors of small and large ribosomal subunits. While the formation of an early large subunit assembly checkpoint precedes the separation of small and large subunit maturation, its mechanism of action and function remain unknown. Here, we report the cryo-electron microscopy structure of the yeast co-transcriptional large ribosomal subunit assembly intermediate that serves as a checkpoint.
View Article and Find Full Text PDFUnlabelled: During early stages of human large ribosomal subunit (60 ) biogenesis, an ensemble of assembly factors establishes and fine-tunes the essential RNA functional centers of pre-60 particles by an unknown mechanism. Here, we report a series of cryo-electron microscopy structures of human nucleolar and nuclear pre-60 assembly intermediates at resolutions of 2.5-3.
View Article and Find Full Text PDFOne of the challenges faced by current CRISPR/Cas9 editing strategies is the difficulty in rapidly selecting clonal populations of biallelically edited cells. Here we present Surface engiNeered fluorEscence Assisted Kit with Protein Epitope Enhanced Capture (SNEAK PEEC), a platform that combines human genome editing with cell-surface display, which enables the direct identification of biallelically edited clones with minimal screening.
View Article and Find Full Text PDFMitochondrial ribosomes (mitoribosomes) synthesize proteins encoded within the mitochondrial genome that are assembled into oxidative phosphorylation complexes. Thus, mitoribosome biogenesis is essential for ATP production and cellular metabolism. Here we used cryo-electron microscopy to determine nine structures of native yeast and human mitoribosomal small subunit assembly intermediates, illuminating the mechanistic basis for how GTPases are used to control early steps of decoding centre formation, how initial rRNA folding and processing events are mediated, and how mitoribosomal proteins have active roles during assembly.
View Article and Find Full Text PDFThe androgen receptor (AR) is a nuclear receptor that governs gene expression programs required for prostate development and male phenotype maintenance. Advanced prostate cancers display AR hyperactivation and transcriptome expansion, in part, through AR amplification and interaction with oncoprotein cofactors. Despite its biological importance, how AR domains and cofactors cooperate to bind DNA has remained elusive.
View Article and Find Full Text PDFCurr Opin Struct Biol
April 2022
The human small subunit processome mediates early maturation of the small ribosomal subunit by coupling RNA folding to subsequent RNA cleavage and processing steps. We report the high-resolution cryo–electron microscopy structures of maturing human small subunit (SSU) processomes at resolutions of 2.7 to 3.
View Article and Find Full Text PDFThe androgen receptor (AR) is a type I nuclear hormone receptor and the primary drug target in prostate cancer due to its role as a lineage survival factor in prostate luminal epithelium. In prostate cancer, the AR cistrome is reprogrammed relative to normal prostate epithelium and particularly in cancers driven by oncogenic ETS fusion genes. The molecular basis for this change has remained elusive.
View Article and Find Full Text PDFMicrosporidia are eukaryotic parasites that infect essentially all animal species, including many of agricultural importance, and are significant opportunistic parasites of humans. They are characterized by having a specialized infection apparatus, an obligate intracellular lifestyle, rudimentary mitochondria and the smallest known eukaryotic genomes. Extreme genome compaction led to minimal gene sizes affecting even conserved ancient complexes such as the ribosome.
View Article and Find Full Text PDFEukaryotic ribosome biogenesis is initiated with the transcription of pre-ribosomal RNA at the 5' external transcribed spacer, which directs the early association of assembly factors but is absent from the mature ribosome. The subsequent co-transcriptional association of ribosome assembly factors with pre-ribosomal RNA results in the formation of the small subunit processome. Here we show that stable rRNA domains of the small ribosomal subunit can independently recruit their own biogenesis factors in vivo.
View Article and Find Full Text PDFThe eukaryotic ribosome is assembled through a complex process involving more than 200 factors. As preribosomal RNA is transcribed, assembly factors bind the nascent pre-rRNA and guide its correct folding, modification, and cleavage. While these early events in the assembly of the small ribosomal subunit have been relatively well characterized, assembly of the large subunit precursors, or pre-60S, is less well understood.
View Article and Find Full Text PDFIn the past 25 years, genetic and biochemical analyses of ribosome assembly in yeast have identified most of the factors that participate in this complex pathway and have generated models for the mechanisms driving the assembly. More recently, the publication of numerous cryo-electron microscopy structures of yeast ribosome assembly intermediates has provided near-atomic resolution snapshots of ribosome precursor particles. Satisfyingly, these structural data support the genetic and biochemical models and provide additional mechanistic insight into ribosome assembly.
View Article and Find Full Text PDFEarly co-transcriptional events during eukaryotic ribosome assembly result in the formation of precursors of the small (40S) and large (60S) ribosomal subunits. A multitude of transient assembly factors regulate and chaperone the systematic folding of pre-ribosomal RNA subdomains. However, owing to a lack of structural information, the role of these factors during early nucleolar 60S assembly is not fully understood.
View Article and Find Full Text PDFThe small subunit processome is the first precursor of the small eukaryotic ribosomal subunit. During its assembly in the nucleolus, many ribosome biogenesis factors, an RNA chaperone, and ribosomal proteins associate with the nascent pre-rRNA. Biochemical studies have elucidated the rRNA-subdomain dependent recruitment of these factors during SSU processome assembly and have been complemented by structural studies of the assembled particle.
View Article and Find Full Text PDFThe small-subunit processome represents the earliest stable precursor of the eukaryotic small ribosomal subunit. Here we present the cryo-EM structure of the Saccharomyces cerevisiae small-subunit processome at an overall resolution of 3.8 Å, which provides an essentially complete near-atomic model of this assembly.
View Article and Find Full Text PDFThe small subunit (SSU) processome, a large ribonucleoprotein particle, organizes the assembly of the eukaryotic small ribosomal subunit by coordinating the folding, cleavage, and modification of nascent pre-ribosomal RNA (rRNA). Here, we present the cryo-electron microscopy structure of the yeast SSU processome at 5.1-angstrom resolution.
View Article and Find Full Text PDFEarly eukaryotic ribosome biogenesis involves large multi-protein complexes, which co-transcriptionally associate with pre-ribosomal RNA to form the small subunit processome. The precise mechanisms by which two of the largest multi-protein complexes-UtpA and UtpB-interact with nascent pre-ribosomal RNA are poorly understood. Here, we combined biochemical and structural biology approaches with ensembles of RNA-protein cross-linking data to elucidate the essential functions of both complexes.
View Article and Find Full Text PDFCrystallography of the cores of phosphotyrosine-activated dimers of STAT1 (132-713) and STAT3 (127-722) bound to a similar double-stranded deoxyoligonucleotide established the domain structure of the STATs and the structural basis for activation through tyrosine phosphorylation and dimerization. We reported earlier that mutants in the linker domain of STAT1 that connect the DNA-binding domain and SH2 domain can prevent transcriptional activation. Because of the pervasive importance of persistently activated STAT3 in many human cancers and the difficulty of finding useful drug candidates aimed at disrupting the pY interchange in active STAT3 dimers, we have examined effects of an array of mutants in the STAT3 linker domain.
View Article and Find Full Text PDFEukaryotic ribosome biogenesis involves a plethora of ribosome-assembly factors, and their temporal order of association with preribosomal RNA is largely unknown. By using Saccharomyces cerevisiae as a model organism, we developed a system that recapitulates and arrests ribosome assembly at early stages, thus providing in vivo snapshots of nascent preribosomal particles. Here we report the stage-specific order in which 70 ribosome-assembly factors associate with preribosomal RNA domains, thereby forming the 6-MDa small-subunit processome.
View Article and Find Full Text PDFEukaryotic ribosome assembly involves a plethora of factors, which ensure that a correctly folded ribosome contains all ribosomal protein components. Among these assembly factors, Yar1 has recently emerged as a molecular chaperone for ribosomal protein rpS3 of the small ribosomal subunit (40S) in yeast. In complex with its chaperone, rpS3 is imported into the nucleus and protected from aggregation.
View Article and Find Full Text PDFCurr Opin Struct Biol
December 2012
The initiation of protein biosynthesis entails the ordered assembly of elongation-competent ribosomes, with an initiator tRNA basepaired to an appropriate mRNA start codon. In eukaryotes, this process is more complex than in prokaryotes and involves numerous protein factors that mediate tRNA delivery, mRNA binding, start codon selection and subunit joining. The recent 40S:eIF1, 80S and eIF2:tRNA:GDPNP ternary complex structures provide an initial structural framework toward a molecular understanding of the eukaryotic translation initiation process.
View Article and Find Full Text PDF