Publications by authors named "Sebastian Klembt"

With a seminal work of Raghu and Haldane in 2008, concepts of topology have been introduced into optical systems, where some of the most promising routes to an application are efficient and highly coherent topological lasers. While some attempts have been made to excite such structures electrically, the majority of published experiments use a form of laser excitation. In this paper, we use a lattice of vertical resonator polariton micropillars to form an exponentially localized topological Su-Schrieffer-Heeger defect.

View Article and Find Full Text PDF

Artificial 1D and 2D lattices have emerged as a powerful platform for the emulation of lattice Hamiltonians, the fundamental study of collective many-body effects, and phenomena arising from non-trivial topology. Exciton-polaritons, bosonic part-light and part-matter quasiparticles, combine pronounced nonlinearities with the possibility of on-chip implementation. In this context, organic semiconductors embedded in microcavities have proven to be versatile candidates to study nonlinear many-body physics and bosonic condensation, and in contrast to most inorganic systems, they allow the use at ambient conditions since they host ultra-stable Frenkel excitons.

View Article and Find Full Text PDF

We report lasing of moiré trapped interlayer excitons (IXs) by integrating a pristine hBN-encapsulated MoSe/WSe heterobilayer into a high- (>10) nanophotonic cavity. We control the cavity-IX detuning using a magnetic field and measure their dipolar coupling strength to be 78 ± 4 micro-electron volts, fully consistent with the 82 micro-electron volts predicted by theory. The emission from the cavity mode shows clear threshold-like behavior as the transition is tuned into resonance with the cavity.

View Article and Find Full Text PDF

The rotational response of quantum condensed fluids is strikingly distinct from rotating classical fluids, especially notable for the excitation and ordering of quantized vortex ensembles. Although widely studied in conservative systems, the dynamics of rotating open-dissipative superfluids such as exciton-polariton condensates remains largely unexplored, as it requires high-frequency rotation while avoiding resonantly driving the condensate. We create a rotating polariton condensate at gigahertz frequencies by off-resonantly pumping with a rotating optical stirrer composed of the time-dependent interference of two frequency-offset, structured laser modes.

View Article and Find Full Text PDF

The introduction of topological physics into the field of photonics has led to the development of photonic devices endowed with robustness against structural disorder. While a range of platforms have been successfully implemented demonstrating topological protection of light in the classical domain, the implementation of quantum light sources in photonic devices harnessing topologically nontrivial resonances is largely unexplored. Here, we demonstrate a single photon source based on a single semiconductor quantum dot coupled to a topologically nontrivial Su-Schrieffer-Heeger (SSH) cavity mode.

View Article and Find Full Text PDF

Engineering the properties of quantum materials via strong light-matter coupling is a compelling research direction with a multiplicity of modern applications. Those range from modifying charge transport in organic molecules, steering particle correlation and interactions, and even controlling chemical reactions. Here, we study the modification of the material properties via strong coupling and demonstrate an effective inversion of the excitonic band-ordering in a monolayer of WSe with spin-forbidden, optically dark ground state.

View Article and Find Full Text PDF

Solid-state quantum emitters with manipulable spin-qubits are promising platforms for quantum communication applications. Although such light-matter interfaces could be realized in many systems only a few allow for light emission in the telecom bands necessary for long-distance quantum networks. Here, we propose and implement an optically active solid-state spin-qubit based on a hole confined in a single InAs/GaAs quantum dot grown on an InGaAs metamorphic buffer layer emitting photons in the C-band.

View Article and Find Full Text PDF

The emergence of spatial and temporal coherence of light emitted from solid-state systems is a fundamental phenomenon intrinsically aligned with the control of light-matter coupling. It is canonical for laser oscillation, emerges in the superradiance of collective emitters, and has been investigated in bosonic condensates of thermalized light, as well as exciton-polaritons. Our room temperature experiments show the strong light-matter coupling between microcavity photons and excitons in atomically thin WSe.

View Article and Find Full Text PDF

Topological insulator lasers are arrays of semiconductor lasers that exploit fundamental features of topology to force all emitters to act as a single coherent laser. In this study, we demonstrate a topological insulator vertical-cavity surface-emitting laser (VCSEL) array. Each VCSEL emits vertically, but the in-plane coupling between emitters in the topological-crystalline platform facilitates coherent emission of the whole array.

View Article and Find Full Text PDF

Interacting bosonic particles in artificial lattices have proven to be a powerful tool for the investigation of exotic phases of matter as well as phenomena resulting from nontrivial topology. Exciton-polaritons, bosonic quasi-particles of light and matter, have been shown to combine the on-chip benefits of optical systems with strong interactions, inherited from their matter character. Technologically significant semiconductor platforms strictly require cryogenic temperatures.

View Article and Find Full Text PDF

We employ electric circuit networks to study topological states of matter in non-Hermitian systems enriched by parity-time symmetry PT and chiral symmetry anti-PT (APT). The topological structure manifests itself in the complex admittance bands which yields excellent measurability and signal to noise ratio. We analyze the impact of PT-symmetric gain and loss on localized edge and defect states in a non-Hermitian Su-Schrieffer-Heeger (SSH) circuit.

View Article and Find Full Text PDF

The emergence of two-dimensional crystals has revolutionized modern solid-state physics. From a fundamental point of view, the enhancement of charge carrier correlations has sparked much research activity in the transport and quantum optics communities. One of the most intriguing effects, in this regard, is the bosonic condensation and spontaneous coherence of many-particle complexes.

View Article and Find Full Text PDF

Spin-orbit coupling is a fundamental mechanism that connects the spin of a charge carrier with its momentum. In the optical domain, an analogous synthetic spin-orbit coupling is accessible by engineering optical anisotropies in photonic materials. Both yield the possibility of creating devices that directly harness spin and polarization as information carriers.

View Article and Find Full Text PDF
Article Synopsis
  • Two-dimensional materials like graphene and transition metal dichalcogenides have special electrical and optical traits due to their unique structure and symmetry.
  • Synthetic matter, created through arrangements of atoms and other components, is providing new ways to explore these unique properties.
  • This work presents a new type of exciton polariton lattice, which could lead to developments in on-chip devices and potentially enable electrically driven lasers with interesting new characteristics.
View Article and Find Full Text PDF

Bosonic condensation belongs to the most intriguing phenomena in physics, and was mostly reserved for experiments with ultra-cold quantum gases. More recently, it became accessible in exciton-based solid-state systems at elevated temperatures. Here, we demonstrate bosonic condensation driven by excitons hosted in an atomically thin layer of MoSe, strongly coupled to light in a solid-state resonator.

View Article and Find Full Text PDF

Exciton polaritons constitute a unique realization of a quantum fluid interacting with its environment. Using selenide-based microcavities, we exploit this feature to warm up a polariton condensate in a controlled way and monitor its spatial coherence. We determine directly the amount of heat picked up by the condensate by measuring the phonon-polariton scattering rate and comparing it with the loss rate.

View Article and Find Full Text PDF

Strong light-matter interaction in Bragg structures possesses several advantages over conventional microcavity system. These structures provide an opportunity to incorporate a large number of quantum wells without increasing the mode volume. Further, it is expected that the strong coupling could occur over the entire thickness of the Bragg structure, and the system offers an improved overlap between exciton wave function and light mode.

View Article and Find Full Text PDF

Solid-state cavity quantum electrodynamics is a rapidly advancing field, which explores the frontiers of light-matter coupling. Metal-based approaches are of particular interest in this field, as they carry the potential to squeeze optical modes to spaces significantly below the diffraction limit. Transition metal dichalcogenides are ideally suited as the active material in cavity quantum electrodynamics, as they interact strongly with light at the ultimate monolayer limit.

View Article and Find Full Text PDF

We present evidence for the existence of a hybrid state of Tamm plasmons and microcavity exciton polaritons in a II-VI material based microcavity sample covered with an Ag metal layer. The bare cavity mode shows a characteristic anticrossing with the Tamm-plasmon mode, when microreflectivity measurements are performed for different detunings between the Tamm plasmon and the cavity mode. When the Tamm-plasmon mode is in resonance with the cavity polariton four hybrid eigenstates are observed due to the coupling of the cavity-photon mode, the Tamm-plasmon mode, and the heavy- and light-hole excitons.

View Article and Find Full Text PDF

Using angle-resolved Raman spectroscopy, we show that a resonantly excited ground-state exciton-polariton fluid behaves like a nonequilibrium coolant for its host solid-state semiconductor microcavity. With this optical technique, we obtain a detailed measurement of the thermal fluxes generated by the pumped polaritons. We thus find a maximum cooling power for a cryostat temperature of 50 K and below where optical cooling is usually suppressed, and we identify the participation of an ultrafast cooling mechanism.

View Article and Find Full Text PDF