Publications by authors named "Sebastian Kirchhoff"

The chelating ability of quinoxaline cores and the redox activity of organosulfide bridges in layered covalent organic frameworks (COFs) offer dual active sites for reversible lithium (Li)-storage. The designed COFs combining these properties feature disulfide and polysulfide-bridged networks showcasing an intriguing Li-storage mechanism, which can be considered as a lithium-organosulfide (Li-OrS) battery. The experimental-computational elucidation of three quinoxaline COFs containing systematically enhanced sulfur atoms in sulfide bridging demonstrates fast kinetics during Li interactions with the quinoxaline core.

View Article and Find Full Text PDF

In the market for next-generation energy storage, lithium-sulfur (Li-S) technology is one of the most promising candidates due to its high theoretical specific energy and cost-efficient ubiquitous active materials. In this study, this cell system was combined with a cost-efficient sustainable solvent-free electrode dry-coating process (DRYtraec®). So far, this process has been only feasible with polytetrafluoroethylene (PTFE)-based binders.

View Article and Find Full Text PDF

We report the one-pot mechanochemical synthesis of N-doped porous carbons at room temperature using a planetary ball mill. The fast reaction (5 minutes) between calcium carbide and cyanuric chloride proceeds in absence of any solvent and displays a facile bottom-up strategy that completely avoids typical thermal carbonization steps and directly yields a N-doped porous carbon containing 16 wt% of nitrogen and exhibiting a surface area of 1080 m2 g-1.

View Article and Find Full Text PDF