Publications by authors named "Sebastian Kelm"

The correction of postural weaknesses through the better positioning of the pelvis is an important approach in sports therapy and physiotherapy. The pelvic position in the sagittal plane is largely dependent on the muscular balance of the ventral and dorsal muscle groups. The aim of this exploratory study was to examine whether healthy persons use similar muscular activation patterns to correct their pelvic position or whether there are different motor strategies.

View Article and Find Full Text PDF

AlphaFold2 has hallmarked a generational improvement in protein structure prediction. In particular, advances in antibody structure prediction have provided a highly translatable impact on drug discovery. Though AlphaFold2 laid the groundwork for all proteins, antibody-specific applications require adjustments tailored to these molecules, which has resulted in a handful of deep learning antibody structure predictors.

View Article and Find Full Text PDF

The propensity for some monoclonal antibodies (mAbs) to aggregate at physiological and manufacturing pH values can prevent their use as therapeutic molecules or delay time to market. Consequently, developability assessments are essential to select optimum candidates, or inform on mitigation strategies to avoid potential late-stage failures. These studies are typically performed in a range of buffer solutions because factors such as pH can dramatically alter the aggregation propensity of the test mAbs (up to 100-fold in extreme cases).

View Article and Find Full Text PDF

We have carried out a long-timescale simulation study on crystal structures of nine antibody-antigen pairs, in antigen-bound and antibody-only forms, using molecular dynamics with enhanced sampling and an explicit water model to explore interface conformation and hydration. By combining atomic level simulation and replica exchange to enable full protein flexibility, we find significant numbers of bridging water molecules at the antibody-antigen interface. Additionally, a higher proportion of interactions excluding bulk waters and a lower degree of antigen bound CDR conformational sampling are correlated with higher antibody affinity.

View Article and Find Full Text PDF

Cysteine-rich knob domains found in the ultralong complementarity determining regions of a subset of bovine antibodies are capable of functioning autonomously as 3-6 kDa peptides. While they can be expressed recombinantly in cellular systems, in this paper we show that knob domains are also readily amenable to a chemical synthesis, with a co-crystal structure of a chemically synthesized knob domain in complex with an antigen showing structural equivalence to the biological product. For drug discovery, following the immunization of cattle, knob domain peptides can be synthesized directly from antibody sequence data, combining the power and diversity of the bovine immune repertoire with the ability to rapidly incorporate nonbiological modifications.

View Article and Find Full Text PDF

Motivation: Co-evolution analysis can be used to accurately predict residue-residue contacts from multiple sequence alignments. The introduction of machine-learning techniques has enabled substantial improvements in precision and a shift from predicting binary contacts to predict distances between pairs of residues. These developments have significantly improved the accuracy of de novo prediction of static protein structures.

View Article and Find Full Text PDF

Dopamine D1 receptor (D1R) is an important drug target implicated in many psychiatric and neurological disorders. Selective agonism of D1R are sought to be the therapeutic strategy for these disorders. Most selective D1R agonists share a dopamine-like catechol moiety in their molecular structure, and their therapeutic potential is therefore limited by poor pharmacological properties in vivo.

View Article and Find Full Text PDF

Most current analysis tools for antibody next-generation sequencing data work with primary sequence descriptors, leaving accompanying structural information unharnessed. We have used novel rapid methods to structurally characterize the complementary-determining regions (CDRs) of more than 180 million human and mouse B-cell receptor (BCR) repertoire sequences. These structurally annotated CDRs provide unprecedented insights into both the structural predetermination and dynamics of the adaptive immune response.

View Article and Find Full Text PDF

Native state aggregation is an important concern in the development of therapeutic antibodies. Enhanced knowledge of mAb native state aggregation mechanisms would permit sequence-based selection and design of therapeutic mAbs with improved developability. We investigated how electrostatic interactions affect the native state aggregation of seven human IgG1 and IgG4P mAb isotype pairs, each pair having identical variable domains that are different for each set of IgG1 and IgG4P constructs.

View Article and Find Full Text PDF

Antibodies are proteins that recognize the molecular surfaces of potentially noxious molecules to mount an adaptive immune response or, in the case of autoimmune diseases, molecules that are part of healthy cells and tissues. Due to their binding versatility, antibodies are currently the largest class of biotherapeutics, with five monoclonal antibodies ranked in the top 10 blockbuster drugs. Computational advances in protein modelling and design can have a tangible impact on antibody-based therapeutic development.

View Article and Find Full Text PDF

G-protein coupled receptors (GPCRs) play a pivotal role in transmitting signals at the cellular level. Structural insights can be exploited to support GPCR structure-based drug discovery endeavours. Despite advances in GPCR crystallography, active state structures are scarce.

View Article and Find Full Text PDF

Peptide vaccines have many potential advantages over conventional ones including low cost, lack of need for cold-chain storage, safety and specificity. However, it is well known that approximately 90% of B-cell epitopes (BCEs) are discontinuous in nature making it difficult to mimic them for creating vaccines. In this study, the degree of discontinuity in B-cell epitopes and their conformational nature is examined.

View Article and Find Full Text PDF

The widely expressed G-protein coupled receptors (GPCRs) are versatile signal transducer proteins that are attractive drug targets but structurally challenging to study. GPCRs undergo a number of conformational rearrangements when transitioning from the inactive to the active state but have so far been believed to adopt a fairly conserved inactive conformation. Using F NMR spectroscopy and advanced molecular dynamics simulations we describe a novel inactive state of the adenosine 2A receptor which is stabilised by the aminotriazole antagonist Cmpd-1.

View Article and Find Full Text PDF

Next-generation sequencing of the Ig gene repertoire (Ig-seq) produces large volumes of information at the nucleotide sequence level. Such data have improved our understanding of immune systems across numerous species and have already been successfully applied in vaccine development and drug discovery. However, the high-throughput nature of Ig-seq means that it is afflicted by high error rates.

View Article and Find Full Text PDF

Motivation: Canonical forms of the antibody complementarity-determining regions (CDRs) were first described in 1987 and have been redefined on multiple occasions since. The canonical forms are often used to approximate the antibody binding site shape as they can be predicted from sequence. A rapid predictor would facilitate the annotation of CDR structures in the large amounts of repertoire data now becoming available from next generation sequencing experiments.

View Article and Find Full Text PDF

Abs are immune system proteins that recognize noxious molecules for elimination. Their sequence diversity and binding versatility have made Abs the primary class of biopharmaceuticals. Recently, it has become possible to query their immense natural diversity using next-generation sequencing of Ig gene repertoires (Ig-seq).

View Article and Find Full Text PDF

Every human possesses millions of distinct antibodies. It is now possible to analyze this diversity next-generation sequencing of immunoglobulin genes (Ig-seq). This technique produces large volume sequence snapshots of B-cell receptors that are indicative of the antibody repertoire.

View Article and Find Full Text PDF

Aiming at the design of an allosteric modulator of the neonatal Fc receptor (FcRn)-Immunoglobulin G (IgG) interaction, we developed a new methodology including NMR fragment screening, X-ray crystallography, and magic-angle-spinning (MAS) NMR at 100 kHz after sedimentation, exploiting very fast spinning of the nondeuterated soluble 42 kDa receptor construct to obtain resolved proton-detected 2D and 3D NMR spectra. FcRn plays a crucial role in regulation of IgG and serum albumin catabolism. It is a clinically validated drug target for the treatment of autoimmune diseases caused by pathogenic antibodies via the inhibition of its interaction with IgG.

View Article and Find Full Text PDF

Motivation: Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations.

View Article and Find Full Text PDF

In macromolecular crystallography, the rigorous detection of changed states (for example, ligand binding) is difficult unless signal is strong. Ambiguous ('weak' or 'noisy') density is experimentally common, since molecular states are generally only fractionally present in the crystal. Existing methodologies focus on generating maximally accurate maps whereby minor states become discernible; in practice, such map interpretation is disappointingly subjective, time-consuming and methodologically unsound.

View Article and Find Full Text PDF

Kinks are a structural feature of alpha-helices and many are known to have functional roles. Kinks have previously tended to be defined in a binary fashion. In this paper we have deliberately moved towards defining them on a continuum, which given the unimodal distribution of kink angles is a better description.

View Article and Find Full Text PDF

SAbPred is a server that makes predictions of the properties of antibodies focusing on their structures. Antibody informatics tools can help improve our understanding of immune responses to disease and aid in the design and engineering of therapeutic molecules. SAbPred is a single platform containing multiple applications which can: number and align sequences; automatically generate antibody variable fragment homology models; annotate such models with estimated accuracy alongside sequence and structural properties including potential developability issues; predict paratope residues; and predict epitope patches on protein antigens.

View Article and Find Full Text PDF

Complementarity-determining regions (CDRs) are antibody loops that make up the antigen binding site. Here, we show that all CDR types have structurally similar loops of different lengths. Based on these findings, we created length-independent canonical classes for the non-H3 CDRs.

View Article and Find Full Text PDF

Membrane proteins are estimated to be the targets of 50% of drugs that are currently in development, yet we have few membrane protein crystal structures. As a result, for a membrane protein of interest, the much-needed structural information usually comes from a homology model. Current homology modelling software is optimized for globular proteins, and ignores the constraints that the membrane is known to place on protein structure.

View Article and Find Full Text PDF