We demonstrated that effects of serum matrix on molecular interactions between drugs and target proteins can be investigated in real time using magnetic bio-sensing techniques. A giant magneto-resistive (GMR) sensor was used on which target proteins were fixed and superparamagnetic nanoparticles (diameter: 50 nm) conjugated with drug were used in phosphate buffer, with and without serum. In this study, the following drug-protein pairs were investigated: quercetin and cAMP-dependent protein kinase A (PKA), Infliximab and tumor necrosis factor alpha (TNFα), and Bevacizumab and vascular endothelial growth factor (VEGF).
View Article and Find Full Text PDFGiant magnetoresistive (GMR) biosensors consisting of many rectangular stripes are being developed for high sensitivity medical diagnostics of diseases at early stages, but many aspects of the sensing mechanism remain to be clarified. Using e-beam patterned masks on the sensors, we showed that the magnetic nanoparticles with a diameter of 50 nm located between the stripes predominantly determine the sensor signals over those located on the sensor stripes. Based on computational analysis, it was confirmed that the particles in the trench, particularly those near the edges of the stripes, mainly affect the sensor signals due to additional field from the stripe under an applied field.
View Article and Find Full Text PDFWe demonstrate microfluidic partitioning of a giant magnetoresistive sensor array into individually addressable compartments that enhances its effective use. Using different samples and reagents in each compartment enables measuring of cross-reactive species and wide dynamic ranges on a single chip. This compartmentalization technique motivates the employment of high density sensor arrays for highly parallelized measurements in lab-on-a-chip devices.
View Article and Find Full Text PDFGiant magnetoresistive (GMR) nanosensors provide a novel approach for measuring protein concentrations in blood for medical diagnosis. Using an in vivo mouse radiation model, we developed protocols for measuring Flt3 ligand (Flt3lg) and serum amyloid A1 (Saa1) in small amounts of blood collected during the first week after X-ray exposures of sham, 0.1, 1, 2, 3, or 6 Gy.
View Article and Find Full Text PDFMonitoring the kinetics of protein interactions on a high-density sensor array is vital to drug development and proteomic analysis. Label-free kinetic assays based on surface plasmon resonance are the current gold standard, but they have poor detection limits, suffer from non-specific binding, and are not amenable to high-throughput analyses. Here, we show that magnetically responsive nanosensors that have been scaled to over 100,000 sensors per cm² can be used to measure the binding kinetics of various proteins with high spatial and temporal resolution.
View Article and Find Full Text PDFRapid and multiplexed measurement is vital in the detection of food-borne pathogens. While highly specific and sensitive, traditional immunochemical assays such as enzyme-linked immunosorbent assays (ELISAs) often require expensive read-out equipment (e.g.
View Article and Find Full Text PDFAdvances in biosensor technologies for in vitro diagnostics have the potential to transform the practice of medicine. Despite considerable work in the biosensor field, there is still no general sensing platform that can be ubiquitously applied to detect the constellation of biomolecules in diverse clinical samples (for example, serum, urine, cell lysates or saliva) with high sensitivity and large linear dynamic range. A major limitation confounding other technologies is signal distortion that occurs in various matrices due to heterogeneity in ionic strength, pH, temperature and autofluorescence.
View Article and Find Full Text PDFDirect protein functionalization provides synthetic antiferromagnetic nanoparticles with high chemical specificity and multifunctionality. These nanoparticle-protein conjugates function as improved magnetic labels for biological detection experiments, and exhibit tunable responses to a small external magnetic field gradient, thus allowing the observation of distinctive single nanoparticle motion.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2008
Magnetic nanotags (MNTs) are a promising alternative to fluorescent labels in biomolecular detection assays, because minute quantities of MNTs can be detected with inexpensive giant magnetoresistive (GMR) sensors, such as spin valve (SV) sensors. However, translating this promise into easy to use and multilplexed protein assays, which are highly sought after in molecular diagnostics such as cancer diagnosis and treatment monitoring, has been challenging. Here, we demonstrate multiplex protein detection of potential cancer markers at subpicomolar concentration levels and with a dynamic range of more than four decades.
View Article and Find Full Text PDF