Spraying of agrochemicals (pesticides, fertilizers) causes environmental pollution on a million-ton scale. A sustainable alternative is target-specific, on-demand drug delivery by polymeric nanocarriers. Trunk injections of aqueous nanocarrier dispersions can overcome the biological size barriers of roots and leaves and allow distributing the nanocarriers through the plant.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2021
The current spraying of agrochemicals is unselective and ineffective, consuming a high amount of fungicides, which endangers the environment and human health. Cellulose-based nanocarriers (NCs) are a promising tool in sustainable agriculture and suitable vehicles for stimuli-responsive release of agrochemicals to target cellulase-segregating fungi, which cause severe plant diseases such as Apple Canker. Herein, cellulose was modified with undec-10-enoic acid to a hydrophobic and cross-linkable derivative, from which NCs were prepared via thiol-ene addition in miniemulsion.
View Article and Find Full Text PDFThe delivery of agrochemicals is typically achieved by the spraying of fossil-based polymer dispersions, which might accumulate in the soil and increase microplastic pollution. A potentially sustainable alternative is the use of biodegradable nano- or micro-formulations based on biopolymers, which can be degraded selectively by fungal enzymes to release encapsulated agrochemicals. To date, no hemicellulose nanocarriers for drug delivery in plants have been reported.
View Article and Find Full Text PDFLignin-based nano- and microcarriers are a promising biodegradable drug delivery platform inside of plants. Many wood-decaying fungi are capable of degrading the wood component lignin by segregated lignases. These fungi are responsible for severe financial damage in agriculture, and many of these plant diseases cannot be treated today.
View Article and Find Full Text PDFNanocarrier (NC)-mediated drug delivery is widely researched in medicine but to date has not been used in agriculture. The first curative NC-based treatment of the worldwide occurring grapevine trunk disease Esca, with more than 2 billion infected plants causing a loss yearly of $1.5 billion, is presented.
View Article and Find Full Text PDFSelf-assembled hydrogels based on the industrially-relevant 1,3:2,4-dibenzylidene sorbitol framework functionalised with reactive acyl hydrazide (DBS-CONHNH2) peripheral groups react with aldehydes without disrupting the nanoscale gel network, adapting gel performance, and dynamically selecting specific aldehyde components from complex mixtures.
View Article and Find Full Text PDFLignin is an abundant biopolymer that is mainly burned for energy production today. However, using it as a polyfunctional macromolecular building block would be desirable. Herein, Kraft lignin was modified through esterification of its hydroxyl groups with methacrylic anhydride.
View Article and Find Full Text PDF