Publications by authors named "Sebastian Huayamares"

Transplantation of ex vivo engineered hematopoietic stem cells (HSCs) can lead to robust clinical responses but carries risks of adverse events from bone marrow mobilization, chemotherapy conditioning and other factors. HSCs have been modified in vivo using lipid nanoparticles (LNPs) decorated with targeting moieties, which increases manufacturing complexity. Here we screen 105 LNPs without targeting ligands for effective homing to the bone marrow in mouse.

View Article and Find Full Text PDF

The treatment of patients with advanced-stage solid tumours typically involves a multimodality approach (including surgery, chemotherapy, radiotherapy, targeted therapy and/or immunotherapy), which is often ultimately ineffective. Nucleic acid-based drugs, either as monotherapies or in combination with standard-of-care therapies, are rapidly emerging as novel treatments capable of generating responses in otherwise refractory tumours. These therapies include those using viral vectors (also referred to as gene therapies), several of which have now been approved by regulatory agencies, and nanoparticles containing mRNAs and a range of other nucleotides.

View Article and Find Full Text PDF

Adding a cationic helper lipid to a lipid nanoparticle (LNP) can increase lung delivery and decrease liver delivery. However, it remains unclear whether charge-dependent tropism is universal or, alternatively, whether it depends on the component that is charged. Here, we report evidence that cationic cholesterol-dependent tropism can differ from cationic helper lipid-dependent tropism.

View Article and Find Full Text PDF

Poly(ethylene glycol) (PEG)-lipids are used in Food-and-Drug-Administration-approved lipid nanoparticle (LNP)-RNA drugs, which are safe and effective. However, it is reported that PEG-lipids may also contribute to accelerated blood clearance and rare cases of hypersensitivity; this highlights the utility of exploring PEG-lipid alternatives. Here, it is shown that LNPs containing poly(2-ethyl-2-oxazoline) (PEOZ)-lipids can deliver messenger RNA (mRNA) to multiple cell types in mice inside and outside the liver.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) are a clinically relevant way to deliver therapeutic mRNA to hepatocytes in patients. However, LNP-mRNA delivery to end-stage solid tumors such as head and neck squamous cell carcinoma (HNSCC) remains more challenging. While scientists have used in vitro assays to evaluate potential nanoparticles for HNSCC delivery, high-throughput delivery assays performed directly in vivo have not been reported.

View Article and Find Full Text PDF

Stereochemistry can alter small-molecule pharmacokinetics, safety and efficacy. However, it is unclear whether the stereochemistry of a single compound within a multicomponent colloid such as a lipid nanoparticle (LNP) can influence its activity in vivo. Here we report that LNPs containing stereopure 20α-hydroxycholesterol (20α) delivered mRNA to liver cells up to 3-fold more potently than LNPs containing a mixture of both 20α- and 20β-hydroxycholesterols (20mix).

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) have delivered RNA to hepatocytes in patients, underscoring the potential impact of nonliver delivery. Scientists can shift LNP tropism to the lung by adding cationic helper lipids; however, the biological response to these LNPs remains understudied. To evaluate the hypothesis that charged LNPs lead to differential cellular responses, we quantified how 137 LNPs delivered mRNA to 19 cell types .

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) have delivered siRNA and mRNA drugs in humans, underscoring the potential impact of improving the therapeutic window of next-generation LNPs. To increase the LNP therapeutic window, we applied lessons from small-molecule chemistry to ionizable lipid design. Specifically, given that stereochemistry often influences small-molecule safety and pharmacokinetics, we hypothesized that the stereochemistry of lipids within an LNP would influence mRNA delivery.

View Article and Find Full Text PDF

Natural polymer-based hydrogels are excellent for encapsulating hydrophilic drugs, but they are mechanically weak and degrade easily. In this communication, we exploit the electrostatic interaction between nanosilicates (nSi) and gelatin methacrylate (GelMA) to form a mechanically tough nanocomposite hydrogel for pharmaceutical drug delivery. These hydrogels, prepared at subzero temperatures to form cryogels, displayed macroporous structures, which favors cell infiltration.

View Article and Find Full Text PDF

Multiple sclerosis is complex and heterogeneous. Better tools are needed to be able to monitor this disease among individuals, but blood-based biomarkers are often too rare to profile. In this work, we developed antigen-specific biomaterials to replicate the central nervous system niche where multiple sclerosis biomarkers are amplified.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer immunotherapy seeks to enhance the immune system's ability to identify and attack tumors, using substances like polyI:C and CpG to provoke strong immune responses through TLR3 and TLR9 activation.
  • Clinical trials using TLR agonists have faced challenges due to immune-related side effects, even with local injections aimed at reducing overall exposure.
  • Researchers found that Glatiramer Acetate can safely deliver these immunostimulants, forming polyplexes that improve effectiveness and reduce side effects, showing promising results in decreasing tumor growth in head and neck cancer models.
View Article and Find Full Text PDF

The capacity for a soft material to combine remote sensing and remote actuation is highly desirable for many applications in soft robotics and wearable technologies. This work presents a silicone elastomer with a suspension of a small weight fraction of ferromagnetic nickel nanorods, which is capable of both sensing deformation and altering stiffness in the presence of an external magnetic field. Cylinders composed of silicone elastomer and 1% by weight nickel nanorods experience large increases in compressive modulus when exposed to an external magnetic field.

View Article and Find Full Text PDF
Article Synopsis
  • Designing a 3D tumor model is essential for screening intratumoral drugs, especially as clinical trials for these therapies grow.
  • The study investigates how the density of collagen fibers in tumors influences drug retention, with stiffer regions showing different retention properties.
  • HA hydrogels infused with collagen I fibers successfully mimic solid tumors and allow for better understanding of drug behavior, demonstrating that certain drugs like glatiramer acetate retain longer compared to others like polyethylene glycol.
View Article and Find Full Text PDF
Article Synopsis
  • Cancer therapies target tumor cells directly or boost the immune system, utilizing methods like checkpoint inhibitors and oncolytic viruses, but can cause unwanted side effects.
  • Intratumoral drug delivery minimizes systemic exposure by administering small amounts of therapy directly into tumors, which helps avoid off-target toxicities.
  • The effectiveness of intratumoral therapies is influenced by factors in the tumor microenvironment and the physical properties of the drugs, with ongoing exploration of new strategies to enhance drug retention in tumors.
View Article and Find Full Text PDF

Activation of the immune system to treat cancer has emerged as a powerful therapy tool, however, treatments must overcome the immunosuppressive microenvironment established by tumors. Toll-like receptor (TLR) agonists like CpG and polyI:C are potent stimulators of non-specific, pro-inflammatory immune responses, targeting TLR9 and TLR3, respectively. While these immunostimulants seem promising, systemic exposure can eventually induce severe side effects.

View Article and Find Full Text PDF