A collimated light beam parallel to the axis of a fused-quartz cylinder impinging on a 90° apex angle concave cone cut in a quartz rod is transformed into a cylindrical wave by total internal reflection. A thin metal film at the quartz-air interface enables excitation of the plasmon mode at the air side that can polarize the cylindrical wave and/or has the potential to monitor physical, chemical, or biological quantities or events at the inner wall of the cone. The present Letter first analyzes the plasmon coupling mechanism and conditions.
View Article and Find Full Text PDFThe present study analyzes the cyclic crack propagation behavior in an austenitic steel processed by electron beam powder bed fusion (PBF-EB). The threshold value of crack growth as well as the crack growth behavior in the Paris regime were studied. In contrast to other austenitic steels, the building direction during PBF-EB did not affect the crack propagation rate, i.
View Article and Find Full Text PDFThe liver is composed of different cell populations. Interactions of different cell populations can be investigated by a newly established indirect co-culture system consisting of immortalised primary human hepatocytes and human monocyte derived macrophages (MDMs). Using the time-dependent cytokine secretion of the co-cultures and single cultures, correlation networks (including the cytokines G-CSF, CCL3, MCP-1, CCL20, FGF, TGF-β1, GM-CSF, IL-8 IL-6, IL-1β, and IL-18) were generated and the correlations were validated by application of IL-8 and TNF-α-neutralising antibodies.
View Article and Find Full Text PDFThe absence of sufficient knowledge of the heterogeneous damage behaviour of textile reinforced composites, especially under combined in-plane and out-of-plane loadings, requires the development of multi-scale experimental and numerical methods. In the scope of this paper, three different types of plain weave fabrics with increasing areal weight were considered to characterise the influence of ondulation and nesting effects on the damage behaviour. Therefore an advanced new biaxial testing method has been elaborated to experimentally determine the fracture resistance at the combined biaxial loads.
View Article and Find Full Text PDFBackground & Aims: Recently, spatial-temporal/metabolic mathematical models have been established that allow the simulation of metabolic processes in tissues. We applied these models to decipher ammonia detoxification mechanisms in the liver.
Methods: An integrated metabolic-spatial-temporal model was used to generate hypotheses of ammonia metabolism.
The use of peptide microarrays for epitope mapping of autoantibodies greatly facilitates the early diagnosis of allergic, cytotoxin-associated diseases and especially inflammatory diseases. A common approach to create the microarrays utilizes nitrocellulose-coated glass slides for peptide probe binding, which is based on surface adsorption. Advantages of this method include excellent peptide binding capacity and long-term stability.
View Article and Find Full Text PDFThe rodent liver eliminates toxic ammonia. In mammals, three enzymes (or enzyme systems) are involved in this process: glutaminase, glutamine synthetase and the urea cycle enzymes, represented by carbamoyl phosphate synthetase. The distribution of these enzymes for optimal ammonia detoxification was determined by numerical optimization.
View Article and Find Full Text PDFInference of inter-species gene regulatory networks based on gene expression data is an important computational method to predict pathogen-host interactions (PHIs). Both the experimental setup and the nature of PHIs exhibit certain characteristics. First, besides an environmental change, the battle between pathogen and host leads to a constantly changing environment and thus complex gene expression patterns.
View Article and Find Full Text PDFGene regulatory network inference is a systems biology approach which predicts interactions between genes with the help of high-throughput data. In this review, we present current and updated network inference methods focusing on novel techniques for data acquisition, network inference assessment, network inference for interacting species and the integration of prior knowledge. After the advance of Next-Generation-Sequencing of cDNAs derived from RNA samples (RNA-Seq) we discuss in detail its application to network inference.
View Article and Find Full Text PDFFor adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear how they interplay in the regulation of ETC enzymes under micro-aerobic chemostat conditions. Also, there are diverse results which and how quinones (oxidised/reduced, ubiquinone/other quinones) are controlling the ArcBA two-component system.
View Article and Find Full Text PDFUnlabelled: The impairment of hepatic metabolism due to liver injury has high systemic relevance. However, it is difficult to calculate the impairment of metabolic capacity from a specific pattern of liver damage with conventional techniques. We established an integrated metabolic spatial-temporal model (IM) using hepatic ammonia detoxification as a paradigm.
View Article and Find Full Text PDFBackground: Inference of gene-regulatory networks (GRNs) is important for understanding behaviour and potential treatment of biological systems. Knowledge about GRNs gained from transcriptome analysis can be increased by multiple experiments and/or multiple stimuli. Since GRNs are complex and dynamical, appropriate methods and algorithms are needed for constructing models describing these dynamics.
View Article and Find Full Text PDFEURASIP J Bioinform Syst Biol
June 2011
Plant carbohydrate metabolism comprises numerous metabolite interconversions, some of which form cycles of metabolite degradation and re-synthesis and are thus referred to as futile cycles. In this study, we present a systems biology approach to analyse any possible regulatory principle that operates such futile cycles based on experimental data for sucrose (Scr) cycling in photosynthetically active leaves of the model plant Arabidopsis thaliana. Kinetic parameters of enzymatic steps in Scr cycling were identified by fitting model simulations to experimental data.
View Article and Find Full Text PDFA mathematical model representing metabolite interconversions in the central carbohydrate metabolism of Arabidopsis (Arabidopsis thaliana) was developed to simulate the diurnal dynamics of primary carbon metabolism in a photosynthetically active plant leaf. The model groups enzymatic steps of central carbohydrate metabolism into blocks of interconverting reactions that link easily measurable quantities like CO(2) exchange and quasi-steady-state levels of soluble sugars and starch. When metabolite levels that fluctuate over diurnal cycles are used as a basic condition for simulation, turnover rates for the interconverting reactions can be calculated that approximate measured metabolite dynamics and yield kinetic parameters of interconverting reactions.
View Article and Find Full Text PDF