Publications by authors named "Sebastian Heedt"

Semiconducting nanowire Josephson junctions represent an attractive platform to investigate the anomalous Josephson effect and detect topological superconductivity. However, an external magnetic field generally suppresses the supercurrent through hybrid nanowire junctions and significantly limits the field range in which the supercurrent phenomena can be studied. In this work, we investigate the impact of the length of InSb-Al nanowire Josephson junctions on the supercurrent resilience against magnetic fields.

View Article and Find Full Text PDF

In superconducting quantum circuits, aluminum is one of the most widely used materials. It is currently also the superconductor of choice for the development of topological qubits. However, aluminum-based devices suffer from poor magnetic field compatibility.

View Article and Find Full Text PDF

The realization of hybrid superconductor-semiconductor quantum devices, in particular a topological qubit, calls for advanced techniques to readily and reproducibly engineer induced superconductivity in semiconductor nanowires. Here, we introduce an on-chip fabrication paradigm based on shadow walls that offers substantial advances in device quality and reproducibility. It allows for the implementation of hybrid quantum devices and ultimately topological qubits while eliminating fabrication steps such as lithography and etching.

View Article and Find Full Text PDF

Detecting the transmission phase of a quantum dot via interferometry can reveal the symmetry of the orbitals and details of electron transport. Crucially, interferometry will enable the read-out of topological qubits based on one-dimensional nanowires. However, measuring the transmission phase of a quantum dot in a nanowire has not yet been established.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed high-purity InSb nanowires (NWs) that are tens of microns long, which is important for creating advanced quantum devices.
  • The traditional method of using a foreign stem for growth limits the length and purity of the nanowires, but this new approach eliminates the need for a stem by using a selective-area mask and gold catalyst.
  • This innovative technique leads to improved growth rates and crystal quality, resulting in significantly enhanced low-temperature electron mobility in the InSb NWs.
View Article and Find Full Text PDF

Selective-area growth is a promising technique for enabling of the fabrication of the scalable III-V nanowire networks required to test proposals for Majorana-based quantum computing devices. However, the contours of the growth parameter window resulting in selective growth remain undefined. Herein, we present a set of experimental techniques that unambiguously establish the parameter space window resulting in selective III-V nanowire networks growth by molecular beam epitaxy.

View Article and Find Full Text PDF

The number of electrons in small metallic or semiconducting islands is quantised. When tunnelling is enabled via opaque barriers this number can change by an integer. In superconductors the addition is in units of two electron charges (2e), reflecting that the Cooper pair condensate must have an even parity.

View Article and Find Full Text PDF

We demonstrate the growth and structural characteristics of InAs nanowire junctions evidencing a transformation of the crystalline structure. The junctions are obtained without the use of catalyst particles. Morphological investigations of the junctions reveal three structures having an L-, T-, and X-shape.

View Article and Find Full Text PDF

We have modeled InAs nanowires using finite element methods considering the actual device geometry, the semiconducting nature of the channel and surface states, providing a comprehensive picture of charge distribution and gate action. The effective electrostatic gate width and screening effects are taken into account. A pivotal aspect is that the gate coupling to the nanowire is compromised by the concurrent coupling of the gate electrode to the surface/interface states, which provide the vast majority of carriers for undoped nanowires.

View Article and Find Full Text PDF

High-quality CdS nanowires with uniform Sn doping were synthesized using a Sn-catalyzed chemical vapor deposition method. X-ray diffraction and transmission electron microscopy demonstrate the single crystalline wurtzite structure of the CdS/Sn nanowires. Both donor and acceptor levels, which originate from the amphoteric nature of Sn in II-VI semiconductors, are identified using low-temperature microphotoluminescence.

View Article and Find Full Text PDF