Objectives: Piperacillin (PIP)/tazobactam is a frequently prescribed antibiotic; however, over- or underdosing may contribute to toxicity, therapeutic failure, and development of antimicrobial resistance. An external evaluation of 24 published PIP-models demonstrated that model-informed precision dosing (MIPD) can enhance target attainment. Employing various candidate models, this study aimed to assess the predictive performance of different MIPD-approaches comparing (i) a single-model approach, (ii) a model selection algorithm (MSA) and (iii) a model averaging algorithm (MAA).
View Article and Find Full Text PDFPurpose: Inadequate piperacillin (PIP) exposure in intensive care unit (ICU) patients threatens therapeutic success. Model-informed precision dosing (MIPD) might be promising to individualize dosing; however, the transferability of published models to external populations is uncertain. This study aimed to externally evaluate the available PIP population pharmacokinetic (PopPK) models.
View Article and Find Full Text PDFThe altered pharmacokinetics of renally cleared drugs such as meropenem in critically ill patients receiving continuous renal replacement therapy (CRRT) might impact target attainment. Model-informed precision dosing (MIPD) is applied to individualize meropenem dosing. However, most population pharmacokinetic (PopPK) models developed to date have not yet been evaluated for MIPD.
View Article and Find Full Text PDF