CPT Pharmacometrics Syst Pharmacol
January 2025
Gastrointestinal first-pass metabolism plays an important role in bioavailability and in drug-drug interactions. Physiologically-based pharmacokinetic (PBPK) modeling is a powerful tool to integrate these processes mechanistically. However, a correct bottom-up prediction of GI first-pass metabolism is challenging and depends on various model parameters like the level of enzyme expression and the basolateral intestinal mucosa permeability (P).
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
December 2024
Elinzanetant is a potent and selective dual neurokin-1 (NK-1) and -3 (NK-3) receptor antagonist that is currently developed for the treatment of women with moderate-to-severe vasomotor symptoms (VMS) associated with menopause. Here, we report the development of a population pharmacokinetic (popPK) model for elinzanetant and its principal metabolites based on an integrated dataset from 366 subjects (including 197 women with VMS) collected in 10 phase I or II studies. The pharmacokinetics of elinzanetant and its metabolites could be well described by the popPK model.
View Article and Find Full Text PDFSince the Open Source Initiative laid the foundation for the open source software environment in 1998, the popularity of free and open source software has been steadily increasing. Model-informed drug discovery and development (MID3), a key component of pharmaceutical research and development, heavily makes use of computational models which can be developed using various software including the Open Systems Pharmacology (OSP) software (PK-Sim/MoBi), a free and open source software tool for physiologically based pharmacokinetic (PBPK) modeling. In this study, we aimed to investigate the impact, application areas, and reach of the OSP software as well as the relationships and collaboration patterns between organizations having published OSP-related articles between 2017 and 2023.
View Article and Find Full Text PDFIn the past, rifampicin was well-established as strong index CYP3A inducer in clinical drug-drug interaction (DDI) studies. However, due to identified potentially genotoxic nitrosamine impurities, it should not any longer be used in healthy volunteer studies. Available clinical data suggest carbamazepine as an alternative to rifampicin as strong index CYP3A4 inducer in clinical DDI studies.
View Article and Find Full Text PDFVericiguat (Verquvo; US: Merck, other countries: Bayer) is a novel drug for the treatment of chronic heart failure. Preclinical studies have demonstrated that the primary route of metabolism for vericiguat is glucuronidation, mainly catalyzed by uridine diphosphate-glucuronosyltransferase (UGT)1A9 and to a lesser extent UGT1A1. Whereas a drug-drug interaction (DDI) study of the UGT1A9 inhibitor mefenamic acid showed a 20% exposure increase, the effect of UGT1A1 inhibitors has not been assessed clinically.
View Article and Find Full Text PDFDue to the strong tendency towards poorly soluble drugs in modern development pipelines, enabling drug formulations such as amorphous solid dispersions, cyclodextrins, co-crystals and lipid-based formulations are frequently applied to solubilize or generate supersaturation in gastrointestinal fluids, thus enhancing oral drug absorption. Although many innovative in vitro and in silico tools have been introduced in recent years to aid development of enabling formulations, significant knowledge gaps still exist with respect to how best to implement them. As a result, the development strategy for enabling formulations varies considerably within the industry and many elements of empiricism remain.
View Article and Find Full Text PDFModeling and simulation emerges as a fundamental asset of drug development. Mechanistic modeling builds upon its strength to integrate various data to represent a detailed structural knowledge of a physiological and biological system and is capable of informing numerous drug development and regulatory decisions via extrapolations outside clinically studied scenarios. Herein, physiologically based pharmacokinetic (PBPK) modeling is the fastest growing branch, and its use for particular applications is already expected or explicitly recommended by regulatory agencies.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
February 2022
Finerenone is a nonsteroidal, selective mineralocorticoid receptor antagonist that recently demonstrated its efficacy to delay chronic kidney disease (CKD) progression and reduce cardiovascular events in patients with CKD and type 2 diabetes. Here, we report the development of a physiologically-based pharmacokinetic (PBPK) model for finerenone and its application as a victim drug of cytochrome P450 3A4 (CYP3A4)-mediated drug-drug interactions (DDIs) using the open-source PBPK platform PK-Sim, which has recently been qualified for this application purpose. First, the PBPK model for finerenone was developed using physicochemical, in vitro, and clinical (including mass balance) data.
View Article and Find Full Text PDFDevelopment and guidance of dosing schemes in children have been supported by physiology-based pharmacokinetic (PBPK) modeling for many years. PBPK models are built on a generic basis, where compound- and system-specific parameters are separated and can be exchanged, allowing the translation of these models from adults to children by accounting for physiological differences. Owing to these features, PBPK modeling is a valuable approach to support clinical decision making for dosing in children.
View Article and Find Full Text PDFThe success of applications of physiologically-based pharmacokinetic (PBPK) modeling in drug development and drug labeling has triggered regulatory agencies to demand rigorous demonstration of the predictive capability of the specific PBPK platform for a particular intended application purpose. The effort needed to comply with such qualification requirements exceeds the costs for any individual PBPK application. Because changes or updates of a PBPK platform would require (re-)qualification, a reliable and efficient generic qualification framework is needed.
View Article and Find Full Text PDFBackground: Treatment of patients with solid tumors and KRAS mutations remains disappointing. One option is the combined inhibition of pathways involved in RAF-MEK-ERK and PI3K-AKT-mTOR.
Methods: Patients with relapsed solid tumors were treated with escalating doses of everolimus (E) 2.
The extent of a drug-drug interaction (DDI) mediated by cytochrome P450 (CYP) 3A inhibitors is highly variable during a dosing interval, as it depends on the temporal course of victim and perpetrator drug concentrations at intestinal and hepatic CYP3A expression sites. Capturing the time course of inhibition is therefore difficult using standard DDI studies assessing changes in area under the curve; thus, a novel design was developed. In a 4-period changeover pilot study, 6 healthy men received intraduodenal or intravenous infusions of the CYP3A substrate midazolam (MDZ) at a rate of 0.
View Article and Find Full Text PDFBackground: Voriconazole, a first-line antifungal drug, exhibits nonlinear pharmacokinetics (PK), together with large interindividual variability but a narrow therapeutic range, and markedly inhibits cytochrome P450 (CYP) 3A4 in vivo. This causes difficulties in selecting appropriate dosing regimens of voriconazole and coadministered CYP3A4 substrates.
Objective: This study aimed to investigate the metabolism of voriconazole in detail to better understand dose- and time-dependent alterations in the PK of the drug, to provide the model basis for safe and effective use according to CYP2C19 genotype, and to assess the potential of voriconazole to cause drug-drug interactions (DDIs) with CYP3A4 substrates in more detail.
CPT Pharmacometrics Syst Pharmacol
December 2019
Food and Drug Administration submissions of physiologically based pharmacokinetic (PBPK) modeling and simulation of small-molecule drugs document the relevance of pediatric drug development and, in particular, information on dosing strategies in children. The most relevant prerequisite for reliable PBPK-based translation of adult pharmacokinetics of a small molecule to children is knowledge of the drug-specific absorption, distribution, metabolism, and elimination (ADME) processes in adults together with existing information about ontogeny of ADME processes relevant for the drug. All mechanisms driving a drug's clearance are of specific importance.
View Article and Find Full Text PDFBackground: Drug-drug interactions (DDIs) and drug-gene interactions (DGIs) pose a serious health risk that can be avoided by dose adaptation. These interactions are investigated in strictly controlled setups, quantifying the effect of one perpetrator drug or polymorphism at a time, but in real life patients frequently take more than two medications and are very heterogenous regarding their genetic background.
Objectives: The first objective of this study was to provide whole-body physiologically based pharmacokinetic (PBPK) models of important cytochrome P450 (CYP) 2C8 perpetrator and victim drugs, built and evaluated for DDI and DGI studies.
CPT Pharmacometrics Syst Pharmacol
May 2019
This study provides whole-body physiologically-based pharmacokinetic models of the strong index cytochrome P450 (CYP)1A2 inhibitor and moderate CYP3A4 inhibitor fluvoxamine and of the sensitive CYP1A2 substrate theophylline. Both models were built and thoroughly evaluated for their application in drug-drug interaction (DDI) prediction in a network of perpetrator and victim drugs, combining them with previously developed models of caffeine (sensitive index CYP1A2 substrate), rifampicin (moderate CYP1A2 inducer), and midazolam (sensitive index CYP3A4 substrate). Simulation of all reported clinical DDI studies for combinations of these five drugs shows that the presented models reliably predict the observed drug concentrations, resulting in seven of eight of the predicted DDI area under the plasma curve (AUC) ratios (AUC during DDI/AUC control) and seven of seven of the predicted DDI peak plasma concentration (C ) ratios (C during DDI/C control) within twofold of the observed values.
View Article and Find Full Text PDFAims: The primary aim of the present study was to quantify the effects of rifampicin, a strong cytochrome P450 (CYP) 3A4 inducer, on the pharmacokinetics of the new selective progesterone receptor modulator, vilaprisan. In addition, the effects of rifampicin on the glucuronidation of bilirubin, an endogenous UDP-glucuronosyltransferase family 1 member A1 (UGT1A1) substrate, were explored.
Methods: This was an open-label, two-period study in 12 healthy postmenopausal women.
According to current US Food and Drug Administration (FDA) and European Medicines Agency (EMA) guidance documents, physiologically based pharmacokinetic (PBPK) modeling is a powerful tool to explore and quantitatively predict drug-drug interactions (DDIs) and may offer an alternative to dedicated clinical trials. This study provides whole-body PBPK models of rifampicin, itraconazole, clarithromycin, midazolam, alfentanil, and digoxin within the Open Systems Pharmacology (OSP) Suite. All models were built independently, coupled using reported interaction parameters, and mutually evaluated to verify their predictive performance by simulating published clinical DDI studies.
View Article and Find Full Text PDFBackground: The objective of this study was to examine the inhibitory potential of darifenacin, fesoterodine, oxybutynin, propiverine, solifenacin, tolterodine and trospium chloride on the seven major human cytochrome P450 enzymes (CYP) by using a standardized and validated seven-in-one cytochrome P450 cocktail inhibition assay.
Methods: An cocktail of seven highly selective probe substrates was incubated with human liver microsomes and varying concentrations of the seven test compounds. The major metabolites of the probe substrates were simultaneously analysed using a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) method.
Objectives: Insufficient linezolid levels, which are associated with a poorer outcome, are often observed in ICU patients who receive standard dosing. Although strategies to overcome these insufficient levels have been discussed, appropriate alternative dosing regimens remain to be identified.
Methods: Various infusion regimens (1200-3600 mg/day; q6h, q8h, q12h and continuous) were simulated in 67 000 ICU patients.
Clarithromycin is a substrate and mechanism-based inhibitor of cytochrome P450 (CYP) 3A4 as well as a substrate and competitive inhibitor of P-glycoprotein (P-gp) and organic anion-transporting polypeptides (OATP) 1B1 and 1B3. Administered concomitantly, clarithromycin causes drug-drug interactions (DDI) with the victim drugs midazolam (CYP3A4 substrate) and digoxin (P-gp substrate). The objective of the presented study was to build a physiologically based pharmacokinetic (PBPK) DDI model for clarithromycin, midazolam, and digoxin and to exemplify dosing adjustments under clarithromycin co-treatment.
View Article and Find Full Text PDFAntimicrob Agents Chemother
September 2016