Publications by authors named "Sebastian F Maehrlein"

van der Waals (vdW) structures host a broad range of physical phenomena. New opportunities arise if different functional layers are remotely modulated or coupled in a device structure. Here we demonstrate the in situ coherent modulation of moiré excitons and correlated Mott insulators in transition metal dichalcogenide (TMD) moirés with on-chip terahertz (THz) waves.

View Article and Find Full Text PDF

Lead halide perovskites (LHPs) have emerged as an excellent class of semiconductors for next-generation solar cells and optoelectronic devices. Tailoring physical properties by fine-tuning the lattice structures has been explored in these materials by chemical composition or morphology. Nevertheless, its dynamic counterpart, phonon-driven ultrafast material control, as contemporarily harnessed for oxide perovskites, has not yet been established.

View Article and Find Full Text PDF

The large tolerance of hybrid perovksites to the trapping of electrons by defects is a key asset in photovoltaic applications. Here, the ionic surface terminations of CHNHPbI are employed as a testbed to study the effect of electrostatic fields on the dynamics of excited carriers. We characterize the transition across the tetragonal to orthorhombic phase.

View Article and Find Full Text PDF

Optical anisotropy originates from crystalline structures with low symmetry and governs the polarization-dependent light propagation. Optical anisotropy is particularly important to lead halide perovskites that have been under intense investigation for optoelectronic and photonic applications, as this group of materials possesses rich structural phases that deviate from the high-symmetry cubic phase. Here we apply 2D optical Kerr effect spectroscopy to quantify the optical anisotropy in single-crystal methylammonium lead bromide (MAPbBr).

View Article and Find Full Text PDF

The ultrafast optical Kerr effect (OKE) is widely used to investigate the structural dynamics and interactions of liquids, solutions, and solids by observing their intrinsic nonlinear temporal responses through nearly collinear four-wave mixing. Non-degenerate mixing schemes allow for background free detection and can provide information on the interplay between a material's internal degrees of freedom. Here, we show a source of temporal dynamics in the OKE signal that is not reflective of the internal degrees of freedom but arises from a group index and momentum mismatch.

View Article and Find Full Text PDF

The ultrafast polarization response to incident light and ensuing exciton/carrier generation are essential to outstanding optoelectronic properties of lead halide perovskites (LHPs). A large number of mechanistic studies in the LHP field to date have focused on contributions to polarizability from organic cations and the highly polarizable inorganic lattice. For a comprehensive understanding of the ultrafast polarization response, we must additionally account for the nearly instantaneous hyperpolarizability response to the propagating light field itself.

View Article and Find Full Text PDF

Solvation plays a pivotal role in chemistry and biology. A solid-state analogy of solvation is polaron formation, but the magnitude of Coulomb screening is typically an order of magnitude weaker than that of solvation in aqueous solutions. Here, we describe a new class of polarons, the ferroelectric large polaron, proposed initially by Miyata and Zhu in 2018 (Miyata, K.

View Article and Find Full Text PDF

The upper limit in LED quantum efficiency from conventional closed-shell molecules is 25% as dictated by singlet and triplet spin statistics. Spin-doublet organic molecules are attractive candidates to exceed this limit, thanks to their 100% theoretical quantum efficiency in radiative recombination. However, examples of stable spin-doublet molecules in the solid state are rare.

View Article and Find Full Text PDF

The coupling of phonons to electrons and other phonons plays a defining role in material properties, such as charge and energy transport, light emission, and superconductivity. In atomic solids, phonons are delocalized over the 3D lattice, in contrast to molecular solids where localized vibrations dominate. Here, a hierarchical semiconductor that expands the phonon space by combining localized 0D modes with delocalized 2D and 3D modes is described.

View Article and Find Full Text PDF

Among the exceptional properties of lead halide perovskites (LHPs) is the ultraslow cooling of hot carriers. Carrier densities below the Mott density for large polarons (≤ ≈10 cm ) are focused on here. As in other semiconductors, a nascent hot electron distribution initially cools down via emission of longitudinal optical (LO) phonons on the 10 -10 s timescale.

View Article and Find Full Text PDF

Understanding the transfer of spin angular momentum is essential in modern magnetism research. A model case is the generation of magnons in magnetic insulators by heating an adjacent metal film. Here, we reveal the initial steps of this spin Seebeck effect with <27 fs time resolution using terahertz spectroscopy on bilayers of ferrimagnetic yttrium iron garnet and platinum.

View Article and Find Full Text PDF

To gain control over magnetic order on ultrafast time scales, a fundamental understanding of the way electron spins interact with the surrounding crystal lattice is required. However, measurement and analysis even of basic collective processes such as spin-phonon equilibration have remained challenging. Here, we directly probe the flow of energy and angular momentum in the model insulating ferrimagnet yttrium iron garnet.

View Article and Find Full Text PDF