Publications by authors named "Sebastian Doll"

Selenium-dependent glutathione peroxidase 4 (GPX4) is the guardian of ferroptosis, preventing unrestrained (phospho)lipid peroxidation by reducing phospholipid hydroperoxides (PLOOH). However, the contribution of other phospholipid peroxidases in ferroptosis protection remains unclear. We show that cells lacking GPX4 still exhibit substantial PLOOH-reducing capacity, suggesting a contribution of alternative PLOOH peroxidases.

View Article and Find Full Text PDF
Article Synopsis
  • - Ferroptosis is a unique cell death process that could help treat certain cancers by targeting the way tumors manage lipid oxidation.
  • - A study has found that 7-dehydrocholesterol (7-DHC), which was thought to be harmful to neurons, actually helps cancer cells survive by protecting their membranes from oxidative damage.
  • - In experiments with neuroblastoma and Burkitt's lymphoma, high levels of 7-DHC were linked to a shift in tumors that makes them more aggressive and resistant to ferroptosis, suggesting a potential cancer survival strategy.
View Article and Find Full Text PDF

Ferroptosis, marked by iron-dependent lipid peroxidation, may present an Achilles heel for the treatment of cancers. Ferroptosis suppressor protein-1 (FSP1), as the second ferroptosis mainstay, efficiently prevents lipid peroxidation via NAD(P)H-dependent reduction of quinones. Because its molecular mechanisms have remained obscure, we studied numerous FSP1 mutations present in cancer or identified by untargeted random mutagenesis.

View Article and Find Full Text PDF
Article Synopsis
  • - Ferroptosis is a type of cell death involving iron-dependent lipid damage, contributing to organ injuries, degenerative diseases, and the resistance of some cancers to therapy.
  • - Recent research reveals that fully reduced forms of vitamin K, specifically menaquinone and phylloquinone, not only play a role in blood clotting but also provide protection against ferroptosis.
  • - The enzyme Ferroptosis Suppressor Protein 1 (FSP1) reduces vitamin K to a potent antioxidant form, helping to prevent lipid peroxidation and acting as a safeguard against warfarin poisoning, indicating a protective non-canonical role for vitamin K in cellular health.
View Article and Find Full Text PDF

Eukaryotic cells, including cancer cells, secrete highly heterogeneous populations of extracellular vesicles (EVs). EVs could have different subcellular origin, composition and functional properties, but tools to distinguish between EV subtypes are scarce. Here, we tagged CD63- or CD9-positive EVs secreted by triple negative breast cancer cells with Nanoluciferase enzyme, to set-up a miniaturized method to quantify secretion of these two EV subtypes directly in the supernatant of cells.

View Article and Find Full Text PDF
Article Synopsis
  • Monocytes, a type of immune cell, move to areas of injury in the body, and this process is controlled by changes to proteins.
  • In people with chronic obstructive pulmonary disease (COPD), a protein called PRMT7 is found in higher amounts in lung tissue, especially in a type of immune cell known as macrophages.
  • Reducing PRMT7 can lead to fewer monocytes reaching injury sites, which means less damage and inflammation, suggesting that blocking certain protein changes might help treat inflammatory conditions.
View Article and Find Full Text PDF

Acute kidney injury (AKI) is morphologically characterized by a synchronized plasma membrane rupture of cells in a specific section of a nephron, referred to as acute tubular necrosis (ATN). Whereas the involvement of necroptosis is well characterized, genetic evidence supporting the contribution of ferroptosis is lacking. Here, we demonstrate that the loss of ferroptosis suppressor protein 1 (Fsp1) or the targeted manipulation of the active center of the selenoprotein glutathione peroxidase 4 (Gpx4) sensitize kidneys to tubular ferroptosis, resulting in a unique morphological pattern of tubular necrosis.

View Article and Find Full Text PDF

Expression of exon-specific isoforms from alternatively spliced mRNA is a fundamental mechanism that substantially expands the proteome of a cell. However, conventional methods to assess alternative splicing are either consumptive and work-intensive or do not quantify isoform expression longitudinally at the protein level. Here, we therefore developed an exon-specific isoform expression reporter system (EXSISERS), which non-invasively reports the translation of exon-containing isoforms of endogenous genes by scarlessly excising reporter proteins from the nascent polypeptide chain through highly efficient, intein-mediated protein splicing.

View Article and Find Full Text PDF

Ferroptosis is associated with lipid hydroperoxides generated by the oxidation of polyunsaturated acyl chains. Lipid hydroperoxides are reduced by glutathione peroxidase 4 (GPX4) and GPX4 inhibitors induce ferroptosis. However, the therapeutic potential of triggering ferroptosis in cancer cells with polyunsaturated fatty acids is unknown.

View Article and Find Full Text PDF

Ferroptosis is an iron-dependent form of necrotic cell death marked by oxidative damage to phospholipids. To date, ferroptosis has been thought to be controlled only by the phospholipid hydroperoxide-reducing enzyme glutathione peroxidase 4 (GPX4) and radical-trapping antioxidants. However, elucidation of the factors that underlie the sensitivity of a given cell type to ferroptosis is crucial to understand the pathophysiological role of ferroptosis and how it may be exploited for the treatment of cancer.

View Article and Find Full Text PDF

Selenoproteins are rare proteins among all kingdoms of life containing the 21 amino acid, selenocysteine. Selenocysteine resembles cysteine, differing only by the substitution of selenium for sulfur. Yet the actual advantage of selenolate- versus thiolate-based catalysis has remained enigmatic, as most of the known selenoproteins also exist as cysteine-containing homologs.

View Article and Find Full Text PDF

Background: As CRISPR/Cas9 mediated screens with pooled guide libraries in somatic cells become increasingly established, an unmet need for rapid and accurate companion informatics tools has emerged. We have developed a lightweight and efficient software to easily manipulate large raw next generation sequencing datasets derived from such screens into informative relational context with graphical support. The advantages of the software entitled ENCoRE (Easy NGS-to-Gene CRISPR REsults) include a simple graphical workflow, platform independence, local and fast multithreaded processing, data pre-processing and gene mapping with custom library import.

View Article and Find Full Text PDF

Ferroptosis is a recently described form of regulated necrotic cell death, which appears to contribute to a number of diseases, such as tissue ischemia/reperfusion injury, acute renal failure, and neurodegeneration. A hallmark of ferroptosis is iron-dependent lipid peroxidation, which can be inhibited by the key ferroptosis regulator glutathione peroxidase 4(Gpx4), radical trapping antioxidants and ferroptosis-specific inhibitors, such as ferrostatins and liproxstatins, as well as iron chelation. Although great strides have been made towards a better understanding of the proximate signals of distinctive lipid peroxides in ferroptosis, still little is known about the mechanistic implication of iron in the ferroptotic process.

View Article and Find Full Text PDF

Ferroptosis is a form of regulated necrotic cell death controlled by glutathione peroxidase 4 (GPX4). At present, mechanisms that could predict sensitivity and/or resistance and that may be exploited to modulate ferroptosis are needed. We applied two independent approaches-a genome-wide CRISPR-based genetic screen and microarray analysis of ferroptosis-resistant cell lines-to uncover acyl-CoA synthetase long-chain family member 4 (ACSL4) as an essential component for ferroptosis execution.

View Article and Find Full Text PDF

Enigmatic lipid peroxidation products have been claimed as the proximate executioners of ferroptosis-a specialized death program triggered by insufficiency of glutathione peroxidase 4 (GPX4). Using quantitative redox lipidomics, reverse genetics, bioinformatics and systems biology, we discovered that ferroptosis involves a highly organized oxygenation center, wherein oxidation in endoplasmic-reticulum-associated compartments occurs on only one class of phospholipids (phosphatidylethanolamines (PEs)) and is specific toward two fatty acyls-arachidonoyl (AA) and adrenoyl (AdA). Suppression of AA or AdA esterification into PE by genetic or pharmacological inhibition of acyl-CoA synthase 4 (ACSL4) acts as a specific antiferroptotic rescue pathway.

View Article and Find Full Text PDF

The selenoenzyme Gpx4 is essential for early embryogenesis and cell viability for its unique function to prevent phospholipid oxidation. Recently, the cytosolic form of Gpx4 was identified as an upstream regulator of a novel form of non-apoptotic cell death, called ferroptosis, whereas the mitochondrial isoform of Gpx4 was previously shown to be crucial for male fertility. Here, we generated and analyzed mice with a targeted mutation of the active site selenocysteine of Gpx4 (Gpx4_U46S).

View Article and Find Full Text PDF