Ketoreductases (KRs) are domains in the reductive loops of type I polyketide synthases (PKSs) and are responsible for the majority of stereocenters in reduced polyketides. Although the highly stereoselective reduction of ACP-bound β-ketothioester intermediates by KRs is crucial for the overall functioning of PKSs, the substrate-dependent stereoselectivity of KRs is a factor that is not yet fully understood, especially for KR domains in late PKS modules that act on biosynthetic precursors with complex polyketidic moieties. We present studies on the three KR domains FosKR7, PlmKR6, and EryKR6 from the biosynthetic pathways of fostriecin, phoslactomycin, and erythromycin by in vitro assays using close surrogates of the octaketidic FosKR7 biosynthetic precursor, complex derivatives and a diketide in the form of their biomimetic -acetylcysteamine thioesters.
View Article and Find Full Text PDFIntramolecular oxa-Michael addition-catalysing cyclases are widespread in polyketide biosynthetic pathways. Although they have significant potential in biotechnology and chemoenzymatic synthesis of chiral heterocycles, they have only scarcely been studied. Here, we present detailed investigations on the selectivity profile of the pyran synthase PedPS7 showing that it combines broad substrate tolerance with high selectivity for the formation of up to two new stereocentres and relaxed precursor stereoisomer discrimination.
View Article and Find Full Text PDF