For over 30 years, biological gas desulfurization under halo-alkaline conditions has been studied and optimized. This technology is currently applied in already 270 commercial installations worldwide. Sulfur particle separation, however, remains a challenge; a fraction of sulfur particles is often too small for liquid-solid separation with conventional separation technology.
View Article and Find Full Text PDFThis article presents a novel crystal agglomeration strategy for elemental sulfur (S) produced during biological desulfurization (BD). A key element is the nucleophilic dissolution of S by sulfide (HS) to polysulfides (S ), which was enhanced by a sulfide-rich, anoxic reactor. This study demonstrates that with enhanced S formation, crystal agglomerates are formed with a uniform size (14.
View Article and Find Full Text PDF