Correlated fluctuations in the blood oxygenation level dependent (BOLD) signal of resting-state functional MRI (i.e., BOLD-functional connectivity, BOLD-FC) reflect a spectrum of neuronal and non-neuronal processes.
View Article and Find Full Text PDFFunctional connectivity (FC) derived from blood oxygenation level dependent (BOLD) functional magnetic resonance imaging at rest (rs-fMRI), is commonly interpreted as indicator of neuronal connectivity. In a number of brain disorders, however, metabolic, vascular, and hemodynamic impairments can be expected to alter BOLD-FC independently from neuronal activity. By means of a neurovascular coupling (NVC) model of BOLD-FC, we recently demonstrated that aberrant timing of cerebral blood flow (CBF) responses may influence BOLD-FC.
View Article and Find Full Text PDFWhile it is known that whole amygdala volume is lastingly reduced after premature birth, it is unknown whether different amygdala nuclei are distinctively affected by prematurity. This question is motivated by two points: First, the observation that developmental trajectories of superficial, centromedial and basolateral amygdala nuclei are different. And second, the expectation that these different developmental pathways are distinctively affected by prematurity.
View Article and Find Full Text PDFRecent evidence suggests increased metabolic and physiologic aging rates in premature-born adults. While the lasting consequences of premature birth on human brain development are known, its impact on brain aging remains unclear. We addressed the question of whether premature birth impacts brain age gap estimates (BrainAGE) using an accurate and robust machine-learning framework based on structural MRI in a large cohort of young premature-born adults ( = 101) and full-term (FT) controls ( = 111).
View Article and Find Full Text PDFVisual information processing requires an efficient visual attention system. The neural theory of visual attention (TVA) proposes that visual processing speed depends on the coordinated activity between frontoparietal and occipital brain areas. Previous research has shown that the coordinated activity between (i.
View Article and Find Full Text PDFPremature-born infants have impaired amygdala structure, presumably due to increased stress levels of premature birth mediated by the amygdala. However, accounting for lifelong plasticity of amygdala, it is unclear whether such structural changes persist into adulthood. To address this problem, we stated the following questions: first, are whole amygdala volumes reduced in premature-born adults? And second, as adult anxiety traits are often increased after prematurity and linked with amygdala structure, are alterations in amygdala associated with adults' anxiety traits after premature birth? We addressed these questions by automated amygdala segmentation of MRI volumes in 101 very premature-born adults (< 32 weeks of gestation and/or birth weight below 1500 g) and 108 full-term controls at 26 years of age of a prospectively and longitudinally collected cohort.
View Article and Find Full Text PDFReduced global hippocampus volumes have been demonstrated in premature-born individuals, from newborns to adults; however, it is unknown whether hippocampus subfield (HCSF) volumes are differentially affected by premature birth and how relevant they are for cognitive performance. To address these questions, we investigated magnetic resonance imaging (MRI)-derived HCSF volumes in very premature-born adults, and related them with general cognitive performance in adulthood. We assessed 103 very premature-born (gestational age [GA] <32 weeks and/or birth weight <1,500 g) and 109 term-born individuals with cognitive testing and structural MRI at 26 years of age.
View Article and Find Full Text PDFCortical thickness (CTh) reflects cortical properties such as dendritic complexity and synaptic density, which are not only vulnerable to developmental disturbances caused by premature birth but also highly relevant for cognitive performance. We tested the hypotheses whether CTh in young adults is altered after premature birth and whether these aberrations are relevant for general cognitive abilities. We investigated CTh based on brain structural magnetic resonance imaging and surface-based morphometry in a large and prospectively collected cohort of 101 very premature-born adults (<32 weeks of gestation and/or birth weight [BW] below 1,500 g) and 111 full-term controls at 26 years of age.
View Article and Find Full Text PDF