Publications by authors named "Sebastian C Dixon"

Thermal control in low-emission windows is achieved by the application of glazings, which are simultaneously optically transparent in the visible and reflective in the near-infrared (IR). This phenomenon is characteristic of coatings with wide optical band gaps that have high enough charge carrier concentrations for the material to interact with electromagnetic radiation in the IR region. While conventional low-E coatings are composed of sandwiched structures of oxides and thin Ag films or of fluorinated SnO coatings, ZnO-based glazing offers an environmentally stable and economical alternative with competitive optoelectronic properties.

View Article and Find Full Text PDF

Low-cost, high-efficiency, and high quality Cl-doped ZnO (ZnO:Cl) thin films that can simultaneously function as transparent conducting oxides (TCOs) and photocatalysts are described. The films have been fabricated by a facile and inexpensive solution-source aerosol-assisted chemical vapor deposition technique using NHCl as an effective, cheap, and abundant source of Cl. Successful Cl substitutional doping in the ZnO films was evident from powder X-ray diffraction, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry results, while scanning electron microscopy reveals the impact of Cl doping on the ZnO thin film morphology.

View Article and Find Full Text PDF

In recent years, state-of-the-art computational modeling of physical and chemical systems has shown itself to be an invaluable resource in the prediction of the properties and behavior of functional materials. However, construction of a useful computational model for novel systems in both academic and industrial contexts often requires a great depth of physicochemical theory and/or a wealth of empirical data, and a shortage in the availability of either frustrates the modeling process. In this work, computational intelligence is instead used, including artificial neural networks and evolutionary computation, to enhance our understanding of nature-inspired superhydrophobic behavior.

View Article and Find Full Text PDF

Robust superhydrophobic surfaces were synthesized as composites of the widely commercially available adhesives epoxy resin (EP) and polydimethylsiloxane (PDMS). The EP layer provided a strongly adhered micro/nanoscale structure on the substrates, while the PDMS was used as a post-treatment to lower the surface energy. In this study, the depositions of EP films were taken at a range of temperatures, deposition times, and substrates via aerosol-assisted chemical vapor deposition (AACVD).

View Article and Find Full Text PDF