Introduction: Double inversion recovery (DIR) has been validated as a sensitive magnetic resonance imaging (MRI) contrast in multiple sclerosis (MS). Deep learning techniques can use basic input data to generate synthetic DIR (synthDIR) images that are on par with their acquired counterparts. As assessment of longitudinal MRI data is paramount in MS diagnostics, our study's purpose is to evaluate the utility of synthDIR longitudinal subtraction imaging for detection of disease progression in a multicenter data set of MS patients.
View Article and Find Full Text PDFBackground: Most artificial intelligence (AI) systems are restricted to solving a pre-defined task, thus limiting their generalizability to unselected datasets. Anomaly detection relieves this shortfall by flagging all pathologies as deviations from a learned norm. Here, we investigate whether diagnostic accuracy and reporting times can be improved by an anomaly detection tool for head computed tomography (CT), tailored to provide patient-level triage and voxel-based highlighting of pathologies.
View Article and Find Full Text PDF