An ambient air laser desorption, plasma ionization imaging method is developed and presented using a microsecond pulsed laser diode for desorption and a flexible microtube plasma for ionization of the neutral desorbate. Inherent parameters such as the laser repetition rate and pulse width are optimized to the imaging application. For the desorption substrate, copper spots on a copper-glass sandwich structure are used.
View Article and Find Full Text PDFThe development of miniature, sensitive, high throughput, and in-situ analytical instruments has been becoming developing field of modern analytical chemistry. Due to its unique advantages such as easy operation, simple configuration, ambient working temperature and pressure, low power consumption, and miniature dimension, dielectric barrier discharge (DBD) has always been a hot topic in analytical chemistry. This review gives an overview of miniature DBD application in analytical atomic spectrometry, starting with an introduction to its geometrical configuration and ionization mechanisms.
View Article and Find Full Text PDFThe effect of addition of low molecular weight organic compounds, i.e. acids, salts and alcohols, on the emission measured from In with flowing liquid anode atmospheric pressure glow discharge optical emission spectrometry (FLA-APGD-OES) was studied.
View Article and Find Full Text PDFA new method for arsenic detection by optical emission spectrometry (OES) is presented. Arsine (AsH) is generated from liquid solutions by means of hydride generation (HG) and introduced into a capillary dielectric barrier discharge (DBD) where it is atomized and excited. A great challenge in OES is the reduction of the recorded background signal, because it negatively affects the limit of detection (LOD).
View Article and Find Full Text PDF