The design, development and application of an efficient procedure for the concise synthesis of the 1,3-syn- and anti-tetrahydropyrimidine cores of manzacidins are reported. The intramolecular allylic substitution reaction of a readily available joint urea-type substrate enables the facile preparation of both diastereomers in high yields. The practical application of this approach is demonstrated in the efficient and modular preparation of the authentic heterocyclic cores of manzacidins, structurally unique bromopyrrole alkaloids of marine origin.
View Article and Find Full Text PDFFull details on the evaluation and application of an easily feasible and generally useful method for configurational assignments of isolated methyl-bearing stereocenters are reported. The analytical tool relies on a bioinformatic gene cluster analysis and utilizes a predictive enoylreductase alignment, and its feasibility was demonstrated by the full stereochemical determination of the ajudazols, highly potent inhibitors of the mitochondrial respiratory chain. Furthermore, a full account of our strategies and tactics that culminated in the total synthesis of ajudazol B, the most potent and least abundant of these structurally unique class of myxobacterial natural products, is presented.
View Article and Find Full Text PDFThe stereochemical determination of the potent respiratory chain inhibitors ajudazols A and B and the total synthesis of ajudazol B are reported. Configurational assignment was exclusively based on biosynthetic gene cluster analysis of both ketoreductase domains for hydroxyl-bearing stereocenters and one of the first predictive enoylreductase alignments for methyl-bearing stereocenters. The expedient total synthesis resulting in unambiguous proof of the predicted stereochemistry involves a short stereoselective approach to the challenging isochromanone stereotriad by an innovative asymmetric ortholithiation strategy, a modular oxazole formation, and a late-stage Z,Z-selective Suzuki coupling.
View Article and Find Full Text PDFAn efficient protocol for the stereoselective synthesis of 1,3-syn and -anti-tetrahydropyrimidinones (syn- and anti-11a) is reported. The modular procedure is based on a stereodivergent cyclization of readily available urea-type substrates (10a) by intramolecular allylic substitution. The cyclization proceeds with excellent yield (up to 99%) and selectivity (up to dr > 20:1), purely based on substrate control.
View Article and Find Full Text PDF