Purpose: The goal of this study was to determine whether molecular imaging of retrograde axonal transport is a suitable technique to detect changes in the spinal cord in response to radiation injury.
Procedures: The lower thoracic spinal cords of adult female BALB/c mice were irradiated with single doses of 2, 10, or 80 Gy. An optical imaging method was used to observe the migration of the fluorescently labeled nontoxic C-fragment of tetanus toxin (TTc) from an injection site in the calf muscles to the spinal cord.
Background And Purpose: The purpose of our study was to utilize a molecular imaging technology based on the retrograde axonal transport mechanism (neurography), to determine if oxaliplatin-induced neurotoxicity affects retrograde axonal transport in an animal model.
Materials And Methods: Mice (n = 8/group) were injected with a cumulative dose of 30 mg/kg oxaliplatin (sufficient to induce neurotoxicity) or dextrose control injections. Intramuscular injections of Tetanus Toxin C-fragment (TTc) labeled with Alexa 790 fluorescent dye were done (15 ug/20 uL) in the left calf muscles, and in vivo fluorescent imaging performed (0-60 min) at baseline, and then weekly for 5 weeks, followed by 2-weekly imaging out to 9 weeks.
Our purpose was to enable an in vivo imaging technology that can assess the anatomy and function of peripheral nerve tissue (neurography). To do this, we designed and tested a fluorescently labeled molecular probe based on the nontoxic C fragment of tetanus toxin (TTc). TTc was purified, labeled, and subjected to immunoassays and cell uptake assays.
View Article and Find Full Text PDFExpression of the anti-apoptotic proto-oncogene bcl-2 is negatively affected by the pro-apoptotic p53. To understand the regulation of bcl-2 expression by p53, we studied the bcl-2 promoter regions individually and in the context of the full-length promoter. While the P1 promoter displayed the highest p53-independent activity, the P2 promoter activity was suppressed in p53-sufficient cancer cell lines.
View Article and Find Full Text PDFAlthough the lung constitutes the major exposure route for airborne manganese (Mn), little is known about the potential pulmonary effects and the underlying molecular mechanisms. Transition metals can mimic a hypoxia-like response, activating the hypoxia inducible factor-1 (HIF-1) transcription factor family. Through binding to the hypoxia-response element (HRE), these factors regulate expression of many genes, including vascular endothelial growth factor (VEGF).
View Article and Find Full Text PDF