Background: Shortages of mechanical ventilation have become a constant problem in Emergency Departments (EDs), thereby affecting the timely deployment of medical interventions that counteract the severe health complications experienced during respiratory disease seasons. It is then necessary to count on agile and robust methodological approaches predicting the expected demand loads to EDs while supporting the timely allocation of ventilators. In this paper, we propose an integration of Artificial Intelligence (AI) and Discrete-event Simulation (DES) to design effective interventions ensuring the high availability of ventilators for patients needing these devices.
View Article and Find Full Text PDFThe Covid-19 pandemic has pushed the Intensive Care Units (ICUs) into significant operational disruptions. The rapid evolution of this disease, the bed capacity constraints, the wide variety of patient profiles, and the imbalances within health supply chains still represent a challenge for policymakers. This paper aims to use Artificial Intelligence (AI) and Discrete-Event Simulation (DES) to support ICU bed capacity management during Covid-19.
View Article and Find Full Text PDFThe accurate recognition of activities is fundamental for following up on the health progress of people with dementia (PwD), thereby supporting subsequent diagnosis and treatments. When monitoring the activities of daily living (ADLs), it is feasible to detect behaviour patterns, parse out the disease evolution, and consequently provide effective and timely assistance. However, this task is affected by uncertainties derived from the differences in smart home configurations and the way in which each person undertakes the ADLs.
View Article and Find Full Text PDF