Publications by authors named "Sebastian Aljoscha Wahl"

Next-generation bioprocesses of a future bio-based economy will rely on a flexible mix of readily available feedstocks. Renewable energy can be used to generate sustainable CO-derived substrates. Metabolic engineering already enables the functional implementation of different pathways for the assimilation of C1 substrates in various microorganisms.

View Article and Find Full Text PDF

Iron, supplemented as iron-loaded transferrin (holotransferrin), is an essential nutrient in mammalian cell cultures, particularly for erythroid cultures. The high cost of human transferrin represents a challenge for large scale production of red blood cells (RBCs) and for cell therapies in general. We evaluated the use of deferiprone, a cell membrane-permeable drug for iron chelation therapy, as an iron carrier for erythroid cultures.

View Article and Find Full Text PDF

Both the identity and the amount of a carbon source present in laboratory or industrial cultivation media have major impacts on the growth and physiology of a microbial species. In the case of the yeast Saccharomyces cerevisiae, sucrose is arguably the most important sugar used in industrial biotechnology, whereas glucose is the most common carbon and energy source used in research, with many well-known and described regulatory effects, e.g.

View Article and Find Full Text PDF

Transfusion of donor-derived red blood cells (RBCs) is the most common form of cell therapy. Production of transfusion-ready cultured RBCs (cRBCs) is a promising replacement for the current, fully donor-dependent therapy. A single transfusion unit, however, contains 2 × 10 RBC, which requires large scale production.

View Article and Find Full Text PDF

Advances in high-throughput sequencing technologies and bioinformatics approaches over almost the last three decades have substantially increased our ability to explore microorganisms and their functions - including those that have yet to be cultivated in pure isolation. Genome-resolved metagenomic approaches have enabled linking powerful functional predictions to specific taxonomical groups with increasing fidelity. Additionally, related developments in both whole community gene expression surveys and metabolite profiling have permitted for direct surveys of community-scale functions in specific environmental settings.

View Article and Find Full Text PDF

Environmental fluctuations in the availability of nutrients lead to intricate metabolic strategies. " Accumulibacter phosphatis," a polyphosphate-accumulating organism (PAO) responsible for enhanced biological phosphorus removal (EBPR) from wastewater treatment systems, is prevalent in aerobic/anaerobic environments. While the overall metabolic traits of these bacteria are well described, the nonavailability of isolates has led to controversial conclusions on the metabolic pathways used.

View Article and Find Full Text PDF

α-Ketoglutarate (αKG) is a metabolite of the tricarboxylic acid cycle, important for biomass synthesis and a precursor for biotechnological products like 1,4-butanediol. In the eukaryote Saccharomyces cerevisiae αKG is present in different compartments. Compartmentation and (intra-)cellular transport could interfere with heterologous product pathways, generate futile cycles and reduce product yields.

View Article and Find Full Text PDF

Redox metabolism plays an essential role in the central metabolic network of all living cells, connecting, but at the same time separating, catabolic and anabolic pathways. Redox metabolism is inherently linked to the excretion of overflow metabolites. Overflow metabolism allows for higher substrate uptake rates, potentially outcompeting other microorganisms for the same substrate.

View Article and Find Full Text PDF

Introduction: The switch from quiescence (G0) into G1 and cell cycle progression critically depends on specific nutrients and metabolic capabilities. Conversely, metabolic networks are regulated by enzyme-metabolite interaction and transcriptional regulation that lead to flux modifications to support cell growth. How cells process and integrate environmental information into coordinated responses is challenging to analyse and not yet described quantitatively.

View Article and Find Full Text PDF

Biotechnological industry strives to develop anaerobic bioprocesses fueled by abundant and cheap carbon sources, like sucrose. However, oxygen-limiting conditions often lead to by-product formation and reduced ATP yields. While by-product formation is typically decreased by gene deletion, the breakdown of oligosaccharides with inorganic phosphate instead of water could increment the ATP yield.

View Article and Find Full Text PDF

Eukaryotic metabolism consists of a complex network of enzymatic reactions and transport processes which are distributed over different subcellular compartments. Currently, available metabolite measurement protocols allow to measure metabolite whole cell amounts which hinder progress to describe the in vivo dynamics in different compartments, which are driven by compartment specific concentrations. Phosphate (Pi) is an essential component for: (1) the metabolic balance of upper and lower glycolytic flux; (2) Together with ATP and ADP determines the phosphorylation energy.

View Article and Find Full Text PDF

Background: Stimulus Response Experiments to unravel the regulatory properties of metabolic networks are becoming more and more popular. However, their ability to determine enzyme kinetic parameters has proven to be limited with the presently available data. In metabolic flux analysis, the use of 13C labeled substrates together with isotopomer modeling solved the problem of underdetermined networks and increased the accuracy of flux estimations significantly.

View Article and Find Full Text PDF