The electron localizability indicator-an efficient quantum chemical tool for analysis of chemical bonding-is applied to unveil the chemical bonding behind the CO adsorption on the (1‾ 1‾ 1‾ ) surface of the highly selective semi-hydrogenation catalyst GaPd. Refining the commonly applied Blyholder model, the obtained results are in excellent agreement with previous experimental and theoretical findings. The clean GaPd(1‾ 1‾ 1‾ ) surface presents unshielded negatively charged Pd centers and positively charged Ga species partially shielded by dangling bonds.
View Article and Find Full Text PDFThe two structural modifications of CuPd were synthesized as bulk powders and tested as unsupported model catalysts in the semi-hydrogenation of acetylene. The partly ordered low-temperature modification (CsCl type of structure) showed an outstanding ethylene selectivity of >90% over 20 h on stream while the disordered high-temperature modification (Cu type of structure) was 20% less selective, indicating an influence of the degree of order in the crystal structure on the catalytic properties. The results are supported by XRD and XPS experiments.
View Article and Find Full Text PDF