New folded molecular structures can only evolve after arising through mutations. This aspect is modeled using genotype-phenotype maps, which connect sequence changes through mutations to changes in molecular structures. Previous work has shown that the likelihood of appearing through mutations can differ by orders of magnitude from structure to structure and that this can affect the outcomes of evolutionary processes.
View Article and Find Full Text PDFJ R Soc Interface
August 2023
Selection and variation are both key aspects in the evolutionary process. Previous research on the mapping between molecular sequence (genotype) and molecular fold (phenotype) has shown the presence of several structural properties in different biological contexts, implying that these might be universal in evolutionary spaces. The deterministic genotype-phenotype (GP) map that links short RNA sequences to minimum free energy secondary structures has been studied extensively because of its computational tractability and biologically realistic nature.
View Article and Find Full Text PDFPhenotype robustness, defined as the average mutational robustness of all the genotypes that map to a given phenotype, plays a key role in facilitating neutral exploration of novel phenotypic variation by an evolving population. By applying results from coding theory, we prove that the maximum phenotype robustness occurs when genotypes are organized as bricklayer's graphs, so-called because they resemble the way in which a bricklayer would fill in a Hamming graph. The value of the maximal robustness is given by a fractal continuous everywhere but differentiable nowhere sums-of-digits function from number theory.
View Article and Find Full Text PDFFront Plant Sci
February 2023
Introduction: Plant image datasets have the potential to greatly improve our understanding of the phenotypic response of plants to environmental and genetic factors. However, manual data extraction from such datasets are known to be time-consuming and resource intensive. Therefore, the development of efficient and reliable machine learning methods for extracting phenotype data from plant imagery is crucial.
View Article and Find Full Text PDFUnravelling the structure of genotype-phenotype (GP) maps is an important problem in biology. Recently, arguments inspired by algorithmic information theory (AIT) and Kolmogorov complexity have been invoked to uncover in GP maps, an exponentially decaying upper bound in phenotype probability with the increasing phenotype descriptional complexity. This means that phenotypes with many genotypes assigned via the GP map must be simple, while complex phenotypes must have few genotypes assigned.
View Article and Find Full Text PDFNat Ecol Evol
November 2022
Fitness landscapes are often described in terms of 'peaks' and 'valleys', indicating an intuitive low-dimensional landscape of the kind encountered in everyday experience. The space of genotypes, however, is extremely high dimensional, which results in counter-intuitive structural properties of genotype-phenotype maps. Here we show that these properties, such as the presence of pervasive neutral networks, make fitness landscapes navigable.
View Article and Find Full Text PDFJ R Soc Interface
June 2022
The genotype-phenotype (GP) map of RNA secondary structure links each RNA sequence to its corresponding secondary structure. Previous research has shown that the large-scale structural properties of GP maps, such as the size of neutral sets in genotype space, can influence evolutionary outcomes. In order to use neutral set sizes, efficient and accurate computational methods are needed to compute them.
View Article and Find Full Text PDFSignificanceWhy does evolution favor symmetric structures when they only represent a minute subset of all possible forms? Just as monkeys randomly typing into a computer language will preferentially produce outputs that can be generated by shorter algorithms, so the coding theorem from algorithmic information theory predicts that random mutations, when decoded by the process of development, preferentially produce phenotypes with shorter algorithmic descriptions. Since symmetric structures need less information to encode, they are much more likely to appear as potential variation. Combined with an arrival-of-the-frequent mechanism, this algorithmic bias predicts a much higher prevalence of low-complexity (high-symmetry) phenotypes than follows from natural selection alone and also explains patterns observed in protein complexes, RNA secondary structures, and a gene regulatory network.
View Article and Find Full Text PDFGenotype-phenotype maps link genetic changes to their fitness effect and are thus an essential component of evolutionary models. The map between RNA sequences and their secondary structures is a key example and has applications in functional RNA evolution. For this map, the structural effect of substitutions is well understood, but models usually assume a constant sequence length and do not consider insertions or deletions.
View Article and Find Full Text PDFUnderstanding how genotypes map onto phenotypes, fitness, and eventually organisms is arguably the next major missing piece in a fully predictive theory of evolution. We refer to this generally as the problem of the genotype-phenotype map. Though we are still far from achieving a complete picture of these relationships, our current understanding of simpler questions, such as the structure induced in the space of genotypes by sequences mapped to molecular structures, has revealed important facts that deeply affect the dynamical description of evolutionary processes.
View Article and Find Full Text PDFCo-expression networks are a powerful tool to understand gene regulation. They have been used to identify new regulation and function of genes involved in plant development and their response to the environment. Up to now, co-expression networks have been inferred using transcriptomes generated on plants experiencing genetic or environmental perturbation, or from expression time series.
View Article and Find Full Text PDFGenotype-phenotype (GP) maps describe the relationship between biological sequences and structural or functional outcomes. They can be represented as networks in which genotypes are the nodes, and one-point mutations between them are the edges. The genotypes that map to the same phenotype form subnetworks consisting of one or multiple disjoint connected components-so-called neutral components (NCs).
View Article and Find Full Text PDFIn genotype-phenotype (GP) maps, the genotypes that map to the same phenotype are usually not randomly distributed across the space of genotypes, but instead are predominantly connected through one-point mutations, forming network components that are commonly referred to as neutral components (NCs). Because of their impact on evolutionary processes, the characteristics of these NCs, like their size or robustness, have been studied extensively. Here, we introduce a framework that allows the estimation of NC size and robustness in the GP map of RNA secondary structure.
View Article and Find Full Text PDFVascular cambium, a lateral plant meristem, is a central producer of woody biomass. Although a few transcription factors have been shown to regulate cambial activity, the phenotypes of the corresponding loss-of-function mutants are relatively modest, highlighting our limited understanding of the underlying transcriptional regulation. Here, we use cambium cell-specific transcript profiling followed by a combination of transcription factor network and genetic analyses to identify 62 new transcription factor genotypes displaying an array of cambial phenotypes.
View Article and Find Full Text PDFThe study of brain networks, including those derived from functional neuroimaging data, attracts a broad interest and represents a rapidly growing interdisciplinary field. Comparing networks of healthy volunteers with those of patients can potentially offer new, quantitative diagnostic methods and a framework for better understanding brain and mind disorders. We explore resting state functional Magnetic Resonance Imaging (fMRI) data through network measures.
View Article and Find Full Text PDFTo overcome nitrogen deficiencies in the soil, legumes enter symbioses with rhizobial bacteria that convert atmospheric nitrogen into ammonium. Rhizobia are accommodated as endosymbionts within lateral root organs called nodules that initiate from the inner layers of Medicago truncatula roots in response to rhizobial perception. In contrast, lateral roots emerge from predefined founder cells as an adaptive response to environmental stimuli, including water and nutrient availability.
View Article and Find Full Text PDFThe self-assembly of proteins into protein quaternary structures is of fundamental importance to many biological processes, and protein misassembly is responsible for a wide range of proteopathic diseases. In recent years, abstract lattice models of protein self-assembly have been used to simulate the evolution and assembly of protein quaternary structure, and to provide a tractable way to study the genotype-phenotype map of such systems. Here we generalize these models by representing the interfaces as mutable binary strings.
View Article and Find Full Text PDFA fundamental question in biology is how gene expression is regulated to give rise to a phenotype. However, transcriptional variability is rarely considered although it could influence the relationship between genotype and phenotype. It is known in unicellular organisms that gene expression is often noisy rather than uniform, and this has been proposed to be beneficial when environmental conditions are unpredictable.
View Article and Find Full Text PDFExperience plays a critical role in crafting high-impact scientific work. This is particularly evident in top multidisciplinary journals, where a scientist is unlikely to appear as senior author if he or she has not previously published within the same journal. Here, we develop a quantitative understanding of author order by quantifying this "chaperone effect," capturing how scientists transition into senior status within a particular publication venue.
View Article and Find Full Text PDFWounding triggers organ regeneration in many plant species, and application of plant hormones, such as auxin and cytokinin, enhances their regenerative capacities in tissue culture. Recent studies have identified several key players mediating wound- and/or plant hormone-induced cellular reprogramming, but the global architecture of gene regulatory relationships underlying plant cellular reprogramming is still far from clear. In this study, we uncovered a gene regulatory network (GRN) associated with plant cellular reprogramming by using an enhanced yeast one-hybrid (eY1H) screen systematically to identify regulatory relationships between 252 transcription factors (TFs) and 48 promoters.
View Article and Find Full Text PDFJ R Soc Interface
January 2018
The mapping between biological genotypes and phenotypes plays an important role in evolution, and understanding the properties of this mapping is crucial to determine the outcome of evolutionary processes. One of the most striking properties observed in several genotype-phenotype (GP) maps is the positive correlation between the robustness and evolvability of phenotypes. This implies that a phenotype can be strongly robust against mutations and at the same time evolvable to a diverse range of alternative phenotypes.
View Article and Find Full Text PDF