The Amazon River Basin's extraordinary social-ecological system is sustained by various water phases, fluxes, and stores that are interconnected across the tropical Andes mountains, Amazon lowlands, and Atlantic Ocean. This "Andes-Amazon-Atlantic" (AAA) pathway is a complex hydroclimatic system linked by the regional water cycle through atmospheric circulation and continental hydrology. Here, we aim to articulate the AAA hydroclimate pathway as a foundational system for research, management, conservation, and governance of aquatic systems of the Amazon Basin.
View Article and Find Full Text PDFSpecies, through their traits, influence how ecosystems simultaneously sustain multiple functions. However, it is unclear how trait diversity sustains the multiple contributions biodiversity makes to people. Freshwater fisheries nourish hundreds of millions of people globally, but overharvesting and river fragmentation are increasingly affecting catches.
View Article and Find Full Text PDFPlant diversity has a positive influence on the number of ecosystem functions maintained simultaneously by a community, or multifunctionality. While the presence of multiple trophic levels beyond plants, or trophic complexity, affects individual functions, the effect of trophic complexity on the diversity-multifunctionality relationship is less well known. To address this issue, we tested whether the independent or simultaneous manipulation of both plant diversity and trophic complexity impacted multifunctionality using a mesocosm experiment from Cedar Creek, Minnesota, USA.
View Article and Find Full Text PDFAlthough biodiversity loss adversely influences a variety of ecosystem functions, how declining wild food diversity affects nutrient supplies for people is poorly understood. Here, we analyze the impact of declining biodiversity on nutrients supplied by fish using detailed information from the Peruvian Amazon, where inland fisheries provide a critical source of nutrition for many of the region's 800,000 people. We found that the impacts of biodiversity loss on nutrient supplies depended on compensation, trophic dynamics, and functional diversity.
View Article and Find Full Text PDFChanges in biodiversity can severely affect ecosystem functioning, but the impacts of species loss on an ecosystem's ability to sustain multiple functions remain unclear. When considering individual functions, the impacts of biodiversity loss depend on correlations between species functional contributions and their extinction probabilities. When considering multiple functions, the impacts of biodiversity loss depend on correlations between species contributions to individual functions.
View Article and Find Full Text PDFEcosystems vary widely in their responses to biodiversity change, with some losing function dramatically while others are highly resilient. However, generalizations about how species- and community-level properties determine these divergent ecosystem responses have been elusive because potential sources of variation (e.g.
View Article and Find Full Text PDF