Publications by authors named "Sebastiaan Van Nuffel"

Mass spectrometry imaging (MSI) is a technique that analyzes the chemical information and spatial distribution of surface analytes. Most MSI studies are conducted in microprobe mode, in which a mass spectrum is collected for each pixel to create a mass image. Thus, the spatial resolution, sample imaging area, and imaging speed are linked.

View Article and Find Full Text PDF

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging is a potent analytical tool that provides spatially resolved chemical information on surfaces at the microscale. However, the hyperspectral nature of ToF-SIMS datasets can be challenging to analyze and interpret. Both supervised and unsupervised machine learning (ML) approaches are increasingly useful to help analyze ToF-SIMS data.

View Article and Find Full Text PDF

Skeletal stem cells (SSCs, or mesenchymal stromal cells typically referred to as mesenchymal stem cells from the bone marrow) are a dynamic progenitor population that can enter quiescence, self-renew or differentiate depending on regenerative demand and cues from their niche environment. However, ex vivo, in culture, they are grown typically on hard polystyrene surfaces, and this leads to rapid loss of the SSC phenotype. While materials are being developed that can control SSC growth and differentiation, very few examples of dynamic interfaces that reflect the plastic nature of the stem cells have, to date, been developed.

View Article and Find Full Text PDF

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging is a surface analysis technique that identifies and spatially resolves the chemical composition of a sample with a lateral resolution of less than 1 μm. Depth analyses can also be performed over thicknesses of several microns. In the case of a painting cross section, for example, TOF-SIMS can identify the organic composition, by detecting molecular ions and fragments of binders, as well as the mineral composition of most of the pigments.

View Article and Find Full Text PDF

Over the past couple of years, imaging mass spectrometry (IMS) has arisen as a powerful tool to answer research questions in the biomedical field. Imaging mass spectrometry allows for label-free chemical imaging by providing full molecular information. The IMS technique best positioned for cell and tissue analysis is time-of-flight secondary ion mass spectrometry (ToF-SIMS) because it has the best spatial resolution of all the molecular IMS techniques and can detect many biochemical species and especially lipids with high sensitivity.

View Article and Find Full Text PDF

Variants of the gene, which encodes a putative potassium-dependent sodium-calcium exchanger (NCKX5) that most likely resides in the melanosome or its precursor, affect pigmentation in both humans and zebrafish (). This finding suggests that genetic variations influencing human skin pigmentation alter melanosome biogenesis via ionic changes. Gaining an understanding of how changes in the ionic environment of organelles impact melanosome morphogenesis and pigmentation will require a spatially resolved way to characterize the chemical environment of melanosomes in pigmented tissue such as retinal pigment epithelium (RPE).

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a rare and deadly disease affecting roughly 15-60 people per million in Europe with a poorly understood pathology. There are currently no diagnostic tools for early detection nor does a curative treatment exist. The lipid composition of arteries in lung tissue samples from human PAH and control patients were investigated using matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) combined with time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging.

View Article and Find Full Text PDF

Imaging mass spectrometry (IMS) has become a powerful tool to characterize the spatial distribution of biomolecules in thin tissue sections. In the case of matrix-assisted laser desorption ionization (MALDI) IMS, homogeneous matrix deposition is critical to produce high-quality ion images, and sublimation in particular has shown to be an excellent matrix deposition method for the imaging of lipids. Matrix deposition by sublimation is, however, a completely solvent-free system, which ought to prevent the mixing of matrix and analytes thought to be necessary for successful MALDI.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvvgqgkdm2hpmruojrfv0isun6n54hq66): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once