Necroptosis is a regulated form of cell death that has been observed in Alzheimer's disease (AD) along with the classical pathological hallmark lesions of amyloid plaques and Tau neurofibrillary tangles. To understand the neurodegenerative process in AD, we studied the role of necroptosis in mouse models and primary mouse neurons. Using immunohistochemistry, we demonstrated activated necroptosis-related proteins in transgenic mice developing Tau pathology and in primary neurons from amyloid precursor protein (APP)-Tau double transgenic mice treated with phosphorylated Tau seeds derived from a patient with AD but not in APP transgenic mice that only exhibited β-amyloid deposits.
View Article and Find Full Text PDFDespite considerable research efforts, it is still not clear which mechanisms underlie neuronal cell death in neurodegenerative diseases. During the last 20 years, multiple pathways have been identified that can execute regulated cell death (RCD). Among these RCD pathways, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy-related cell death, and lysosome-dependent cell death have been intensively investigated.
View Article and Find Full Text PDFAging is the main risk factor for Alzheimer's disease (AD) and other neurodegenerative pathologies, but the molecular and cellular changes underlying pathological aging of the nervous system are poorly understood. AD pathology seems to correlate with the appearance of cells that become senescent due to the progressive accumulation of cellular insults causing DNA damage. Senescence has also been shown to reduce the autophagic flux, a mechanism involved in clearing damaged proteins from the cell, and such impairment has been linked to AD pathogenesis.
View Article and Find Full Text PDFThe major neuropathological hallmarks of Alzheimer's disease (AD) are amyloid β (Aβ) plaques and neurofibrillary tangles (NFT), accompanied by neuroinflammation and neuronal loss. Increasing evidence is emerging for the activation of the canonical NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome in AD. However, the mechanisms leading to neuronal loss in AD and the involvement of glial cells in these processes are still not clear.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is characterized by the degeneration of motor neurons in the motor cortex, brainstem, and spinal cord. Although ALS is considered a motor neuron disorder, neuroinflammation also plays an important role. Recent evidence in ALS disease models indicates activation of the inflammasome and subsequent initiation of pyroptosis, an inflammatory type of cell death.
View Article and Find Full Text PDF