Publications by authors named "Sebastiaan M Van Liempd"

Article Synopsis
  • * Elevated levels of miR-873-5p were found in liver tissues of ALD patients, suggesting a role in NAD depletion and liver injury, while anti-miR-873-5p treatment showed promise in reducing liver damage and improving metabolic processes.
  • * Results suggest that targeting miR-873-5p could provide a new approach to treating ALD by enhancing NAD metabolism and liver health, hinting at its potential based on previous associations with other liver conditions.
View Article and Find Full Text PDF

Drug-induced liver injury (DILI) development is commonly associated with acetaminophen (APAP) overdose, where glutathione scavenging leads to mitochondrial dysfunction and hepatocyte death. DILI is a severe disorder without effective late-stage treatment, since N-acetyl cysteine must be administered 8 h after overdose to be efficient. Ammonia homeostasis is altered during liver diseases and, during DILI, it is accompanied by decreased glycine N-methyltransferase (GNMT) expression and S-adenosylmethionine (AdoMet) levels that suggest a reduced methionine cycle.

View Article and Find Full Text PDF

Background: Cholangiocarcinoma (CCA) is still a deadly tumour. Histological and molecular aspects of thioacetamide (TAA)-induced intrahepatic CCA (iCCA) in rats mimic those of human iCCA. Carcinogenic changes and therapeutic vulnerabilities in CCA may be captured by molecular investigations in bile, where we performed bile proteomic and metabolomic analyses that help discovery yet unknown pathways relevant to human iCCA.

View Article and Find Full Text PDF

Most plant species develop stress symptoms when exposed to high ammonium (NH4+) concentrations. The root is the first organ in contact with high NH4+ and therefore the first barrier to cope with ammonium stress. In this work, we focused on root adaptation to ammonium nutrition in the model plant Brachypodium distachyon.

View Article and Find Full Text PDF

Lyme carditis is an extracutaneous manifestation of Lyme disease characterized by episodes of atrioventricular block of varying degrees and additional, less reported cardiomyopathies. The molecular changes associated with the response to Borrelia burgdorferi over the course of infection are poorly understood. Here, we identify broad transcriptomic and proteomic changes in the heart during infection that reveal a profound down-regulation of mitochondrial components.

View Article and Find Full Text PDF

Background: Arachidyl amido cholanoic acid (Aramchol) is a potent downregulator of hepatic stearoyl-CoA desaturase 1 (SCD1) protein expression that reduces liver triglycerides and fibrosis in animal models of steatohepatitis. In a phase IIb clinical trial in patients with nonalcoholic steatohepatitis (NASH), 52 wk of treatment with Aramchol reduced blood levels of glycated hemoglobin A1c, an indicator of glycemic control.

Aim: To assess lipid and glucose metabolism in mouse hepatocytes and in a NASH mouse model [induced with a 0.

View Article and Find Full Text PDF

Unlabelled: Nonalcoholic steatohepatitis (NASH) is the advanced form of nonalcoholic fatty liver disease (NAFLD) which sets the stage for further liver damage. The mechanism for the progression of NASH involves multiple parallel hits including oxidative stress, mitochondrial dysfunction, inflammation and others. Manipulation of any of these pathways may be an approach to prevent NASH development and progression.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how the mTORC1 pathway plays a crucial role in cancer cell growth by regulating polyamine dynamics, which are vital for tumor development.
  • Researchers used metabolomics on mouse models and human prostate cancer biopsies, discovering that mTORC1 alters the production of key metabolites like dcSAM and affects the stability of the enzyme AMD1.
  • Findings show that high AMD1 levels correlate with active mTORC1 in human prostate cancer, while patients treated with the mTORC1 inhibitor everolimus experienced reduced AMD1 levels and cell proliferation, highlighting mTORC1's role in oncogenic metabolism.
View Article and Find Full Text PDF

Background & Aims: Nonalcoholic fatty liver disease (NAFLD) is a consequence of defects in diverse metabolic pathways that involve hepatic accumulation of triglycerides. Features of these aberrations might determine whether NAFLD progresses to nonalcoholic steatohepatitis (NASH). We investigated whether the diverse defects observed in patients with NAFLD are caused by different NAFLD subtypes with specific serum metabolomic profiles, and whether these can distinguish patients with NASH from patients with simple steatosis.

View Article and Find Full Text PDF

S-Adenosylmethionine (SAMe) is the principal methyl donor of the cell and is synthesized via an ATP-driven process by methionine adenosyltransferase (MAT) enzymes. It is tightly linked with cell proliferation in liver and colon cancer. In humans, there are three genes, mat1A, mat2A and mat2B, which encode MAT enzymes.

View Article and Find Full Text PDF

We present a fully automated and hyphenated bioanalytical method for metabolic profiling of potentially harmful xenoestrogens. The system consists of an on-line cytochrome P450 bioreactor coupled to a reversed-phase, gradient high-performance liquid chromatograph. A C18 solid-phase extraction (SPE) unit is used as an interface between the P450 bioreactor and the HPLC column.

View Article and Find Full Text PDF

Here we describe novel on-line human CYP1A2 and CYP2D6 Enzyme Affinity Detection (EAD) systems coupled to gradient HPLC. The use of the systems lies in the detection of individual inhibitory ligands in mixtures (e.g.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) can damage proteins, cause lipid peroxidation, and react with DNA, ultimately resulting in harmful effects. Antioxidants constitute one of the defense systems used to neutralize pro-oxidants. Since pro-oxidants and antioxidants are found ubiquitously in nature, pro-and antioxidant effects of individual compounds and of mixtures receive much attention in scientific research.

View Article and Find Full Text PDF

A high-resolution screening (HRS) technology is described, which couples 2 parallel enzyme affinity detection (EAD) systems for substrates and inhibitors of rat cytosolic glutathione-S-transferases (cGSTs) and purified human GST P1 to gradient reversed-phase high-performance liquid chromatography (HPLC). The cGSTs and GST P1 EAD systems were optimized and validated first in flow injection analysis (FIA) mode, and optimized values were subsequently used for HPLC mode. The IC(50) values of 8 ligands thus obtained online agreed well with the IC(50) values obtained with microplate reader-based assays.

View Article and Find Full Text PDF

A high resolution screening (HRS) technology is described, in which gradient high-performance liquid chromatography (HPLC) is connected on-line to three parallel placed bioaffinity detection systems containing mammalian cytochromes P450 (P450s). The three so-called enzyme affinity detection (EAD) systems contained, respectively, liver microsomes from rats induced by beta-naphthoflavone (CYP1A activity), phenobarbital (CYP2B activity), and dexamethasone (CYP3A activity). Each P450-EAD system was optimized for enzyme, substrate, and organic modifier (isopropyl alcohol, methanol, and acetonitrile) in flow injection analysis mode.

View Article and Find Full Text PDF

Here we present a high-resolution screening (HRS) methodology for postcolumn on-line profiling of metabolites with affinity for the estrogen receptor alpha (ERalpha). Tamoxifen, which is metabolized into multiple metabolites, was used as the model compound. Most of the 14 metabolites detected exhibited affinity for the ERalpha.

View Article and Find Full Text PDF

A high-resolution screening platform, coupling online affinity detection for mammalian cytochrome P450s (Cyt P450s) to gradient reversed-phase high-performance liquid chromatography (HPLC), is described. To this end, the online Cyt P450 enzyme affinity detection (EAD) system was optimized for enzyme (beta-NF-induced rat liver microsomes), probe substrate (ethoxyresorufine), and organic modifier (methanol or acetonitrile). The optimized Cyt P450 EAD system has first been evaluated in a flow injection analysis (FIA) mode with 7 known ligands of Cyt P450 1A1/1A2 (alpha-naphthoflavone, beta-naphthoflavone, ellipticine, 9-hydroxy-ellipticine, fluvoxamine, caffein, and phenacetin).

View Article and Find Full Text PDF

The development and validation of an online cytochrome P450 (CYP)-based bioreactor coupled to automated solid-phase extraction (SPE) and gradient HPLC separation is described. The analytical method was checked on intra- and inter-day repeatability of the ethoxyresorufin-O-demethylation (EROD) reaction with CYP 1Al/1A2 containing beta-NF induced rat liver microsomes as an enzyme source. These experiments showed that CYP activity was linearly decreased with 16% over an 11 h period.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session65ro2l6ivhog1e522jpfn6fm8hgteoe0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once