Publications by authors named "Sebald P"

We present the high resolution infrared detection of fifteen highly vibrationally excited nν + mν combination bands (n ≤ 7 and m ≤ 3) of C produced in a supersonically expanding propyne plasma, of which fourteen are reported for the first time. The fully resolved spectrum, around 3 μm, is recorded using continuous wave cavity ring-down spectroscopy. A detailed analysis of the resulting spectra is provided by ro-vibrational calculations based on an accurate local ab initio potential energy surface for C (X̃Σ).

View Article and Find Full Text PDF

An accurate local (near-equilibrium) potential energy surface (PES) is reported for the C3 molecule in its electronic ground state (X̃(1)Σg (+)). Special care has been taken in the convergence of the potential relative to high-order correlation effects, core-valence correlation, basis set size, and scalar relativity. Based on the aforementioned PES, several rovibrational states of all (12)C and (13)C substituted isotopologues have been investigated, and spectroscopic parameters based on term energies up to J = 30 have been calculated.

View Article and Find Full Text PDF

An accurate near-equilibrium potential energy surface (PES) has been constructed for the azide ion (N(3)(-)) on the basis of coupled cluster calculations up to CCSDTQ (Kállay, M.; Surján, P. R.

View Article and Find Full Text PDF

Explicitly correlated coupled cluster theory at the CCSD(T*)-F12b level in conjunction with the aug-cc-pV5Z basis set has been used in the calculation of three-dimensional potential energy and dipole moment surfaces for the bifluoride ion (FHF(-)). An empirically corrected analytical potential energy function (PEF) was obtained by fit to four pieces of accurate spectroscopic information. That PEF was used in variational calculations of energies and wave functions for a variety of rovibrational states of the isotopologues FHF(-), FDF(-), and FTF(-).

View Article and Find Full Text PDF

Ab initio calculations employing the coupled cluster method CCSD(T), in conjunction with a small-core pseudopotential for the cadmium atom, have been employed to construct a near-equilibrium potential energy function (PEF) and an electric dipole moment function (EDMF) for CdH(2). The significance of the spin-orbit interaction was checked and found to be of minor importance. Making use of two pieces of experimental information for the most abundant isotopomer (114)CdH(2), we obtained a refined PEF, which, within variational calculations of rovibrational states and wave functions, reproduces all available experimental data (S.

View Article and Find Full Text PDF

At the Giessen University Hospital electronic data processing systems have been in routine use since 1975. In the early years developments were focused on ADT functions (admission/discharge/transfer) and laboratory systems. In the next decade additional systems were introduced supporting various functional departments.

View Article and Find Full Text PDF